Skip to main content

Magneto-Optic Analysis of Magnetic Microstructures

Magneto-Optic Analysis of Magnetic Microstructures

Wednesday, June 5, 2013 at 4:00 pm
Weniger 304
Prof. Rudolf Schaefer, Leibniz Institute for Solid State and Materials Research (IFW), Dresden, Germany
The rich world of magnetic microstructure or magnetic domains, extending from visible dimensions down to the nano-scale, forms the mesoscopic link between the fundamental physical properties of a magnetic material and its macroscopic properties and technical applications, which range from films for computer storage technology to magnetic cores for electrical machinery. Hysteresis phenomena, energy loss in inductive devices, noise in sensors, or the magnetoresistive properties of modern spintronic devices can be decisively determined by the peculiarities of the underlying magnetic microstructure, especially by irreversibilities in the magnetization process. Therefore any development and optimization of magnetic materials, which is usually accompanied by the measurement of magnetization curves, requires an understanding of the underlying domains and their reaction to magnetic fields, which, in most cases, can only be gained by direct imaging. The presentation will address different aspects of magnetic microstructure adapted, where possible, to the interest of the audience and supported by domain observation using Kerr microscopy. This may include domains and magnetization processes in bulk magnetic material like oriented and non-oriented electrical steel, amorphous and nanocrystalline ribbons or permanent magnets, as well as thin films and multilayers. Fast magnetization processes can also be considered. Most challenging is the analysis of hidden (internal) domains and processes in bulk material. They are relevant for material performance and their analysis requires surface imaging in combination with domain modeling and some volume-sensitive imaging method. Aside from their scientific and technical relevance, magnetic microstructures are also aesthetically appealing, an aspect that will be part of the presentation.
Jansen