
Chapter 11

2D Plotting with PtPlot;
classes and packages

It only seems fair for us to keep programs simple while you are in the process of learning
how to write them. However, we would like to encourage you to include plotting as part of
your programs, both because it’s a good way to visualize your results, and because its fun.
Fortunately, there is an excellent Java plotting package called PtPlot that is both free and
easy to use, and in § ?? we will show you how to use it.

In order to use PtPlot, you will need to work with multiple classes. Yet understanding
how to do this is rather advanced for beginners. Accordingly, you can either use the sample
programs without understanding them (the “black box” or operational approach), or you
can try to make some sense of the commands that you use, and in the process get familiar
with some advanced Java notation and techniques. In this section we talk about multiple
classes and packages.

We suggest that, in the least, you skim this section. You may well want to return to it
after you have more experience with Java notation and objects. However, if the material to
follow appears too advanced for you, you can still jump to the § ?? on PtPlot and just follow
the instructions there.

11.1 Classes and Packages*

Up until this point, your programs have contained a single class contained in a file with
a .java extension. That class contained a main method and possibly a number of other
methods. Just as we encourage you to modify old programs rather than writing all pro-
grams from scratch, so we encourage you to include methods you have already written and
debugged when you write your new programs. In addition, Java contains a large number of
libraries consisting of collections of methods for various purposes (for example, to draw a
pull–down menu).

Accordingly, it is most efficient if you do not try to write all programs completely from
scratch, but rather think of the existing libraries (your personal ones as well of others) as
tool boxes from which you can extract the individual tools needed for you to construct your
program. This will save you time, both because you do not have to write all the methods,
and because the methods have already been debugged (usually the most time consuming
part of programming). In fact, the object–oriented approach of Java is specifically designed
to make reuse of components easier and safer.

3

4 CHAPTER 11. 2D PLOTTING WITH PTPLOT; CLASSES AND PACKAGES

11.1.1 Using Packages

We have already referred to a collection of related methods as a library. For example,
the math library contains the methods that calculate various math functions like sines and
cosines. In Java terminology, each method would be in a class file, so we could also say that
a library is a collection of related classes. In Java terminology, libraries are called packages.

In general, there are two types of packages: the standard Java packages that constitute
the Java language, and user–defined packages that extend standard Java. Some of the
standard Java packages that we employ in this book are:

Java Package Classes for
java.lang Basic elements of Java language.
java.util Utilities; random number generators, date, time, etc..
java.awt Abstract Windowing Toolkit; creating graphical user interfaces.
java.applet Creating applets and interact with browsers
java.beans Creating reusable software components.
java.io Data input and output

The PtPlot package is an example of a user–defined package.
Because these Java packages contain hundreds or thousands of classes (sometimes with

methods of the same name), some organization is necessary to keep tract of what each
method does. Java does this with a hierarchical directory structure in which there are parent
packages containing sub-packages, with the sub-packages containing more sub-packages or
various classes. To make the name of each class unique, one precedes it with the names of
the package and sub-packages that contain this class.

For example, consider the command

System.out.println

that we have been using to print a line of output on the screen. Here System is the name
of the class (classes begin with capital letters) containing many of Java’s methods. When
we give the combination System.out, we are referring to an object (or the class that creates
it) that represents the standard output stream (what gets written on your screen). The
final println that gets affixed to System.out is the name of a method in the class System that
prints lines (in this case it adds a line to the object representing the output stream).

To repeat, by convention, the names of classes are capitalized, which helps set them
apart from packages which have lowercase names. This is relevant here because the Sys-

tem.out.println command is in the java.lang package, and so the proper full name of the
command is actually

java.lang.System.out.println,

which contains the package name as well. Because java.lang is the most basic package, the
java compiler automatically looks there to find the methods we invoke, so we can (fortu-
nately) leave off the java.lang prefix. (Presumably, java is the main package and lang is a
sub-package, but it is easier to just say java.lang is the package.)

We must admit that we sometimes find Java’s naming conventions confusing. Never-
theless, we will use them when importing packages and in using use methods from other
classes, so some familiarity with it the conventions is helpful.

You include the classes from a package with the import command. The command can
be given in one of two forms:

import <packageName>.<specific classes> import specific classes from packagenName

11.2. GRAPHING WITH PTPLOT 5

import <packageName>.* import all classes from packagenName

The import command tells the Java compiler to look in the package packageName for
methods that it might not find otherwise. However, for this to work the compiler must
know where the package of classes and their methods is stored on your particular computer.
In other words, the compiler needs to know the path to follow through the local disk memory
to get to the directory or folder where the classes are stored. Accordingly, each computer
system, be it Windows, Unix, or MacOS, has an environmental variable named CLASSPATH

that contains the explicit path to where the classes are stored on that particular computer.
As we show in the PtPlot case below, you will need to modify this variable before a package
can be imported.

Even though what follows is more advanced programming than we do in this book, for
completeness we indicate how you could create your own packages. This is done by placing
several classes in the same .java file, and then including a package command at the begin-
ning of the file:

package <mypackage name>;

public class <myclass1 name>

{
<normal class structure, multiple methods OK>

}
public class <myclass2 name>

{
<normal class structure, multiple methods OK>

}

Note, your package may be a collection of methods without any main method, for ex-
ample, mathematical subroutines that are called from all the programs that you write.
However, there must be one main method someplace, if the program is to run since execu-
tion always begins in a main method. Likewise, the main method must be a public class
(other classes can read only the public classes).

11.2 Graphing with PtPlot

One of the exceptional things about Java is that it contains commands at the programming
level that permit you to draw graphs on your computer screen — regardless of your operating
system. Yet these commands are rather low level, as we shall in see Chapter ??, Web
Computing, and you must attend to a number of details if you want to use truly elementary
Java graphics to make your plots.

To avoid all that fuss, we recommend the use of PtPlot [PtPlot],

http://ptolemy.eecs.berkeley.edu/java/ptplot/
as a basic plotting package for 2-D graphs1. PtPlot is free, supported by the University of
California, written in Java (and thus runs under Unix, Linux, Mac’s and MS Windows),
and is easy to use for 2-D data plotting or histograms2. It can be incorporated right into
your programs or applets (applets are discussed in Chapter ??, Web Computing), or used
as a stand–alone application or applet. We include on the disk a Java library (class file)
containing the needed methods to plot graphs; alternatively, you may download the most
recent version over the Web (we describe how to do that in a separate section).

1This section prepared with the help of Connelly Barnes.
2For our research use, and for many of the graphs in this book, we use AceGr/Xmgr for 2-D plotting

and gnuplot for 3-D graphics. Yet AceGr is available only for Unix systems at present, while gnuplot,
which is available for Unix and MS Windows, cannot be called from Java programs. In Chap. ??, Electric
Potential of Realistic Capacitor, we present a short tutorial on the use of gnuplot.

6 CHAPTER 11. 2D PLOTTING WITH PTPLOT; CLASSES AND PACKAGES

Figure 11.1: Sample output from elementary use of PtPlot in which three data sets are
placed on one plot. Note how error bars are included for two. The data file read by PtPlot
here is in ptPlotdat.plt.

11.2.1 EasyPtPlot.java

As an example of how this works, here is a program EasyPlot.java that plots the function
cos(x) versus x:

1. /* EasyPtPlot.java by D.McI, C.B, RHL, 8/03 OSU

2. * Plot function using PtPlot package */

3.

4. import ptolemy.plot.*; // Import plotting package.

5. public class EasyPtPlot

6. {
7. public static void main(String[] args)

8. {
9. // Create ptplot ‘‘Plot’’ object

10. Plot myPlot = new Plot();

11.

12. myPlot.setTitle("f(x) vs x");

13. myPlot.setXLabel("x");

14. myPlot.setYLabel("f(x)");

15. // Add (x,cos(x)) data points to Plot object using addPoint

16.

17. for (double x = -5.; x <= 5.; x += 0.02)

18. {
19. /* myPlot.addPoint(int dataSet, double x, double y, boolean connect)

20. dataSet != 0 for multiple functions on same graph

21. connect = ‘‘true’’ to connect points */

22.

23. double y = Math.cos(x);

24. myPlot.addPoint(0, x, y, true);

25. }
26.

27. // Create PlotApplication to display Plot object

28. PlotApplication app = new PlotApplication(myPlot);

29. }
30. }

11.2. GRAPHING WITH PTPLOT 7

Before you try using this file, you need to have PtPlot installed on your computer (see
your system administrator or §?? to do it yourself).

Because it is so much more fun to be able to see your results graphically, we recommend
you start including graphical output in your programs, even as you are still learning Java.
That being the case, at first you may just use these commands without fully understanding
how they go about their business. As you get more familiar with Java, the innards of this
“black box” will make more sense to you. However, there are several parts of EasyPtPlot.java

that you will need to understand so that you can modify it for your purposes. So let’s open
the box a bit.

On line 4 we see the statement import ptolemy.plot.*;. This copies in or includes the
plotting package programs (class files) with your program3.

In a general sense, PtPlot deals with an object that represents your plot. We call this
object myPlot and create it on line 10. There it is created as a variable type that PtPlot has
defined as Plot4. We then add various features, step–by–step, to myPlot to make it just the
plot we want. On line 12 we give it a title, and on lines 13 and 14 we label the x and y
axes. Note, as is standard with objects in Java, we first give the name of the object and
then modify it with “dot modifiers”. (These modifiers are like the arguments to the plot
command in Maple, only here the arguments get attached to the objects.)

At this point could also tell PtPlot what range of x and y values are to be plotted, but
we don’t! Instead we let PtPlot set the x and y ranges based on the extents of the data
which it is given.

Line 17 begins a for loop that repeats itself for a number of increasing x values. (for
loops are discussed in Chap.10, Simple Projectile Motion.) During each repetition, line 23
calculates a new value of y = cos(x) and then line 24 adds a point (x, y) to your plot object.
By having true as the fourth argument in myPlot.addPoint(0, x, y, true), we are telling PtPlot
to connect the previous point to the new one. (This is explained in the comments on lines
19-21.)

You will need to place your own function, or data to be plotted, on line 23 where we call
cos(x). If you have written a method or function whose output you wish to plot, it can be
called on line 23.

So far, your plot object myPlot exists only in the computer’s memory. For you to have
that plot appear on the computer screen in front of you, you need line 28 to create a
PlotApplication with your plot as its input. Then when the program is run, PlotApplication

runs another program to display your plot on the screen.

11.2.2 Running the Sample Program

Our program EasyPtPlot.java is about as simple as you can get. However, you can make it
fancier by including more options as commands, or by using the pull-down menus in the
PtPlot window in which your plot is displayed. We discuss the options below, but before
that, we recommend that you run the sample program now and see for yourself what we
will be talking about.

• Compile and execute EasyPtPlot.java in the usual way:

> javac EasyPtPlot.java Compile EasyPtplot.java into EasyPtplot.class.

> java EasyPtPlot Run EasyPtplot.class.

3More specifically, you are copying a subdirectory ptolemy, which, in turn, contains the subdirectory
plot. The * is a wild card character, and its use here means to copy all the files (class files) in that
subdirectory.

4Objects in their own right are discussed in Chapters 12 and 13. Here we get some practical experience
with them, which will help when we need to understand them.

8 CHAPTER 11. 2D PLOTTING WITH PTPLOT; CLASSES AND PACKAGES

Figure 11.2: The em Format submenu available under the Edit menu when running a PtPlot
PlotApplication. This submenu basic control of the plot’s features.

• You should get a pretty window on your screen just like Fig. ??. You may move it
anywhere on your screen by grabbing the bar on top, and resize it by grabbing a corner
and pulling. Try that!

• By grabbing a corner and pulling, make the window fill about one quarter of your
screen.

• Notice the Edit pull–down menu. Select Edit and pull it down. (Alternatively, the
E indicates that you can do this via keystrokes alone. In this case, Alt + E also pulls
down the menu.)

• From the Edit pull–down menu select Format. You should get a window like that in
Fig. ?? which lets you control most of the options in your graph.

• Experiment with the Format menu. In particular, change the graph so that only
points are plotted, with the points being pixels and black, and so that your name is
in the title.

• Select a central portion of your plot and zoom in on it by drawing a box (with mouse
button depressed) starting from upper–left corner and then moving down before you
release the mouse button. You zoom out by drawing a box from the lower right
corner and moving up. You can also resize your graph by selecting Special/Reset Axes
or by resetting the x and y ranges. And of course, you can always start over by closing
the Java window and running the java command again.

• Notice that you can print your graphs under the File menu, as well as write them to
file in postscript (.ps format). You may also export plots in various formats.

11.2.3 PtPlot Options

On the disk and Web we also give some examples containing more options. The program
ProjectilePlot.java, used in Chap.10, places several graphs on same plot, as well as generating
different plots. In addition, the program TwoPlotExample.java and its data file data.plt, taken
from the PtPlot web site, shows how to place two plots side–by–side, and how to read in a
data file containing error bars and various symbols for the points. Here we list of some of

11.2. GRAPHING WITH PTPLOT 9

the options available. More are to be found in the description of the commands (methods)
on the PtPlot Web site [PtPlot].

Calling PtPlot from Your Program
Plot myPlot = new Plot(); Name and create plot object myPlot.
PlotApplication app = new PlotApplication(myPlot);

Display plot on screen (after stuff below).
myPlot.setTitle(“f(x) vs x”); Add title to plot.
myPlot.setXLabel(“x”); Label x axis.
myPlot.setYLabel(“f(x)”); Label y axis.
myPlot.addPoint(0, x, y, true); Add (x, y) to plot set 0, connect points.
myPlot.addPoint(1, x, y, false); Add (x, y) to set 1, don’t connect points.
myPlot.addLegend(0, “Set 0”); Label data set 0 in legend.
myPlot.addPointWithErrorBars(0, x, y, yLo, yHi, true);

Plot, (x, y-YLo), (x, y+yHi) with error bars.
myPlot.clear(0); Remove all points from data set 0.
myPlot.clear(false); Remove data from all sets.
myPlot.clear(true); For all sets, remove points, set options to default.
myPlot.setSize(500, 400); Set plot size in pixels (optional).
myPlot.setXRange(-10., 10.); Set x range (default fit to data).
myPlot.setYRange(-8., 8.); Set a y range (default fit to data).
myPlot.setXLog(true); Use log scale for x axis.
myPlot.setYLog(true); Use log scale for y axis.
myPlot.setGrid(false); Turn off the grid.
myPlot.setColor(false); Color in black and white.
myPlot.setButtons(true); Display zoom-to-fit button on plot.
myPlot.fillPlot(); Adjust x, y ranges to fit data.
myPlot.setImpulses(true, 0); Lines down from points to x axis, set 0.
myPlot.setMarksStyle(“none”, 0);

Draw points as “none” (or points, dots, various, pixels).
myPlot.setBars(true); Display data sets as bar charts.
String s = myPlot.getTitle(); Extract title as string (also works for other properties).

Sometimes you may have your data in a file, possibly because it came from another
application or because you wanted to get it all computed or measured before you started
looking at it. If you write your data in a format that PtPlot can read, then you will be able
to plot it and replot at your pleasure. Although this may sound like a lot of work, most
reasonable formats will work. However, you can also include some formatting commands in
the data file, and those are specific to PtPlot.

In the simplest form, a PtPlot Data Format is just a text file with a single x, y point
per line. The x and y values may be separated by spaces, tabs, or commas. To plot up your
data files, enter

> java ptolemy.plot.PlotApplication dataFile Plot data in file dataFile.

This causes the standard PtPlot window to open and display your data. (If this does not
work, then your CLASSPATH variable may not be defined properly, or PtPlot may not be
installed. See Installing PtPlot below.)

Alternatively, you can read your data in from the PtPlot window. You can either use a
window you already have open, or issue the Java run command without a data file name:

> java ptolemy.plot.PlotApplication Open PtPlot window.

10 CHAPTER 11. 2D PLOTTING WITH PTPLOT; CLASSES AND PACKAGES

To look at your data from the PtPlot window, you can choose

File → Open → yourDataFile (11.1)

Note that by default, PtPlot will look for files with .plt or .xml suffixes. However, you can
enter any name you want, or pull down the Filter menu and select * to see all of your files.
The same options holds for the File → SaveAs option. (In addition, you can Export your
plot as an Encapsulated PostScript (.eps) file, a format useful for inserting in documents.)

In addition to having your data plotted, you should label your axes, add a title, and
customize other parts of your plots to make them informative and clear. To do these things,
you can include PtPlot commands with your data, or work with the pull–down menus under
Edit and Special in the PtPlot window. The options are essentially the same as ones you
would call from your program. Below is a useful lists. A complete and up–to–date list can
be found on the PtPlot web site.

PtPlot Data Format
TitleText: f(x) vs x Add title to plot.
XLabel: x Label x axis.
YLabel: y Label y axis.
XRange: 0, 12 Set x range (default: fit to data).
YRange: -3, 62 Set y range (default: fit to data).
Marks: none (Default) No marks at points, lines connects points.
Marks: points or: dots, various, pixels.
Lines: on/off Do not connect points with lines; default: on.
Impulses: on/off Lines down from points to x axis; default: off.
Bars: on/off Bar graph (turn off lines) default: off.
Bars: width (, offset) Bar graph; bars of width and (optional) offset.
DataSet: string Specify data set to plot; string appears in legend.
x, y Specify a data point; comma, space, tab separators.
move: x, y Do not connect this point to previous.
x, y, yLowErrorBar, yHighErrorBar

Plot (x, y-YLo), (x, y+yHi) with error bars.

Note, if commands appear before DataSet directives, then the command will apply to all data
sets. If commands appear after DataSet directives, then it will apply to that data set only.

On the disk and on the Web we give sample programs EasyPlot.java and sample data
file PtPlotdat.plt. By convention, PtPlot looks for its data files with a .plt extender. This
program and sample data file are simple to use. Output from EasyPtPlot is shown in Fig. ??.
We also give the program TwoPlotExample.java and its data file data.plt. These are from
the PtPlot home page and demonstrate how to place several plots next to each other. It is
more advanced. Output from TwoPlotExample is shown in Fig. ??.

11.2.4 Sample PtPlot Data file PtPlotdat.plt

This is a comment: Sample data for PtPlot

TitleText: Grade Inflation

XRange: 0,5

YRange: -5, 6

Grid: on

XLabel: Years in College

YLabel: GPA

Marks: various

NumSets:3

Color: on

11.3. APPENDIX: INSTALLING PTPLOT 11

Figure 11.3: Sample output from advanced use of PtPlot in which two plots are placed side
by side (in file TwoPlotExample.java).

DataSet: Data Set 0

Lines:off

0,-5.4

1,-4.1

2,-3.2

3,-2.3

4, -2

DataSet: Data Set 1

Lines:on

0,-3.6, -4,-3

1,-2.7, -3, -2.5

2,-1.8, -2.4,-1.5

3,-0.9, -1.3, -0.5

4, 0.6, 0,1.1

DataSet: Data Set 2

0,0.5, -1,2

1, 1.5, 0.5, 2

2, 2.5, 1.5, 4

3, 3.5, 2.5, 5

4, 4.5, 3, 6

11.3 Appendix: Installing PtPlot

The first step in setting up PtPlot is to download its latest version and then uncompress
it5. The plotting package we call PtPlot is part of a larger Java project called Ptolemy. You
can find documentation and download this free software from

http://ptolemy.eecs.berkeley.edu/java/ptplot/

After you have properly unzipped or untarred the Ptplot package, a directory such as
ptplot5.2 should be created. The number 5.2 here is the version number of the PtPlot
package that we are now using; there may be a newer version when you do your down-
load. For our examples, we have renamed the directory in which PtPlot resides as simply

5If you have never done this before, you may want to do it with a friend who has. In Windows, you can
use WinZip to unzip files [http://www.winzip.com/]. In Unix, you can try double–clicking on an icon of the
file, or decompress it from within a shell with gunzip and tar -xvf.

12 CHAPTER 11. 2D PLOTTING WITH PTPLOT; CLASSES AND PACKAGES

ptplot, with no version number attached. On Unix, we assume that your ptplot directory
is ˜/java packages/ptplot, where the ˜ indicates your home directory. On Windows, we
assume that your ptplot directory is C:\ptplot6. Advanced users may prefer to keep the
version number in the directory name, or use a different organizational system. However,
if this is the first time that you have installed a Java package, we recommend that you use
the same directory names as we.

Now that we have placed the ptplot package in its own directory, we need to tell Java
where to find it. As a matter of convention, the Java compiler javac and interpreter java

assume that the value of a variable named CLASSPATH contains the information on where
packages such as ptplot are stored. This type of variable that controls the environment in
which programs run is called an environmental variable. Since the programs in the packages
have already been compiled into class files, the variable that directs Java to the classes is
called CLASSPATH.

To get PtPlot to work under Java you need to modify the CLASSPATH variable to include
the location where PtPlot is stored. Here are some directions on how to do that for various
systems:

Windows 95 Open the autoexec.bat file (usually C:\autoexec.bat) in a text editor such as
Notepad. At the end of the file, add the line

SET CLASSPATH=%CLASSPATH%;C:\ptplot
Save the autoexec.bat file and restart your computer.

Windows 98/ME Click Start and then Run under that. Key in the command name
msconfig, and press Enter. The System Configuration Utility should appear. Select the
tab named Autoexec.bat and look for a line that says SET CLASSPATH. If you cannot find
that line, click New, and enter

SET CLASSPATH=C:\ptplot
If the SET CLASSPATH line already exists, select it, choose Edit, add a semicolon (;) to
the end of the line, and then add

C:\ptplot
after the semicolon. The semicolon is a separator that tells Java that it should look in
more than one location for class files. Make sure that the checkbox by the CLASSPATH

line is checked, and click OK. Answer “Yes” when Windows asks you whether you
want to restart the computer.

Windows NT/2000/XP Open the Control Panel (Start, Settings, Control Panel in
NT/2000, or Start, Control Panel in XP). Open the System icon (you may need to
switch to the Classic View in Windows XP). Under the System Properties window, se-
lect the Advanced tab, and choose Environment Variables. Two lists should be shown.
One contains environment variables just for you, and one contains environment vari-
ables for all users on the system. In your personal environment variable list, look for
CLASSPATH. If you cannot find the CLASSPATH variable, click New, enter CLASSPATH for the
variable name, and C:\ptplot for the value. If the CLASSPATH variable already exists,
select it, choose Edit, add a semicolon (;) to the end of the current value, and then
add
C:\ptplot

6If you use the Windows automatic installer, that means you should install to C:\ptplot, rather than
C:\ptolemy\ptplot5.2, if you want to follow our examples ad verbatim.

11.3. APPENDIX: INSTALLING PTPLOT 13

after the semicolon. The semicolon is a separator that tells Java that it should look
in more than one location for class files. Click OK until you get back to the Control
Panel, and then restart your machine.

Solaris We assume that you do not have system authority for your computer, and so
will install ptplot in your home directory. We suggest that you make a subdirectory
called java packages in your home directory and will install PtPlot there. To make that
subdirectory:

> cd Change to my home directory.

> mkdir java packages Create subdirectory in present directory.

> mkdir java packages/ptplot Create subdirectory in java packages.

This assumes that you will be installing the PtPlot package in ˜/java packages/ptplot,
where the ˜ represents your home directory.

Your CLASSPATH variable that needs updating is contained in the initiation (init) file file
.cshrc in your home directory. Because this file name begins with a “.”, it is usually
hidden from view. Beware, it is easy to mess up your .cshrc file and end up in a
quagmire. Accordingly, we suggest that you first create a backup copy of your .cshrc

file, in case anything goes wrong:

> cp .cshrc .cshrc bk Make a backup, just in case.

Next, open the .cshrc file in a text editor. Because this file may contain some very
long lines that must be kept intact, if your text editor has an “automatic word wrap”
feature, make sure it is turned off. Next look for a line that starts with setenv CLASSPATH.
If you cannot find that line, add setenv CLASSPATH ˜/java packages/ptplot on its own line
at the end of your .cshrc file. If the setenv CLASSPATH line already exists, add a colon
(:) to the end of the existing line, and then add ˜/java packages/ptplot after the colon.
The colon is a separator, which tells Java that it should look in more than one location
for class files. Save your .cshrc file, then close and reopen all C shell terminals that
you have open (or log off and then back on).

Once you have the CLASSPATH variable set, you should make sure that it is working. To
check, go to a command prompt in a shell and enter

> echo %CLASSPATH% Windows check.

> echo $CLASSPATH Unix check.

The complete value for the CLASSPATH variable should be printed to the screen, for example:

/home/rubin/java/classes:/home/rubin:/home/rubin/mpiJava:/usr/local/mpiJava/lib/classes:/home/rubin/java packages:/home/rubin/java packages/ptplot:.

If your changes do not show up, carefully follow the directions again or ask for help.
At this point, you are ready to try out PtPlot. Get the file EasyPtPlot.java containing a

sample plot program from the disk or the Web and enter

> javac EasyPtPlot.java Compile sample plot program.

> java EasyPtPlot Run sample plot program.

If the PtPlot package was installed correctly, you should get a nice graph on your screen. If
this does not work, ask for help.

Add stuff here

