
PVM˙03.01 March 1, 2007

A PVM Tutorial

From: A SURVEY OF COMPUTATIONAL PHYSICS
by RH Landau, MJ Paez, and CC Bordeianu.
Copyright Princeton University Press, Princeton, 2007.
Electronic Materials copyright: R Landau, Oregon State Univ, 2007; MJ Paez,
Univ Antioquia, 2007; and CC Bordeianu, Univ Bucharest, 2007.
Support by National Science Foundation.

This tutorial is based on the Web tutorial of Hans Kowallik.

We recommend using MPI rather than PVM because it is more modern,
more common, and somewhat higher-level. However, we are told that some users
either prefer or have only PVM, and so we discuss it briefly here. PVM is a soft-
ware system that allows you to combine a number of computers which are con-
nected over a network into a Parallel Virtual Machine. This machine can consist of
computers with different architectures, running different flavors of the Unix/Linux
operating systems, and can still be treated as if it were a single parallel machine.

CONFIGURING PVM

Before using PVM, a user has to complete a number of configuration tasks. These
task depend on the way PVM was installed on your system and the characteristics
of your system. Instead of trying to cover all the different systems we will assume
that:

1. You are running under a Unix/Linux operating system.
2. Your system has shared home directories, that is, you see the same set of files

regardless of which computer you log onto.
3. PVM is already installed on all the machines you want to use.
4. PVM libraries are in the /usr/lib or /usr/local/lib directories, and that

your compiler searches these automatically.
5. PVM include files in are the /usr/include directory, and that your compiler

searches here automatically.

PVM˙03.01 March 1, 2007

4 CONTENTS

You can still use PVM if one or more of these are not true for you, however there
are a several of things you have to do differently:

1. Find out which computers are available. You can use any computer on which
you have an account, and on which PVM is installed.

2. Edit or create the file .rhosts in your home directory. This file must have
an entry for every computer you want to use. The entry is in the form of the
name of the computer and your login name on that machine:¨ ¥

ucs . o r s t . edu k o w a l l i h
daphy . p h y s i c s . o r s t . edu hans
goophy . p h y s i c s . o r s t . edu hans
mango . p h y s i c s . o r s t . edu hans
banana . p h y s i c s . o r s t . edu hans
c o c o n u t . p h y s i c s . o r s t . edu hans
papaya . p h y s i c s . o r s t . edu hans§

If your login name is the same on all machines, then you can leave the field
with the login name blank, but it doesn’t hurt to put it in.

3. Set environment variables. If you use csh or tcsh, then add to your .cshrc
file:¨ ¥

s e t e n v PVM ROOT / u s r / l o c a l / pvm3
s e t e n v PVM ARCH ‘$PVN ROOT / l i b / pvmgetarch ‘
s e t e n v XPVM ROOT / u s r / l o c a l / pvm3 / xpvm
s e t p a t h =($ p a t h $PVN ROOT / l i b)
s e t p a t h =($ p a t h $PVN ROOT / l i b / $PVN ARCH)§

If there is no pvm3 directory in /usr/local, then you have to change the first
entry to whatever directory holds these files.

4. Create directories for your executables:
> mkdir $HOME/pvm3/bin/PVM ARCH

where PVM ARCH is the PVM code for the architecture. Although this step is
not necessary for PVM to work, it will make your life much easier if you are
going to use PVM on computers with different architectures. You can find
the code for each computer’s via the PVM function pvmgetarch.

Different System Configurations

No shared home directories In this case you have to repeat many of the steps
described under general configuration on all the machines you want to use. Specif-
ically, you must create the .rhosts file and add the environment variables to your
.cshrc file.

PVM is not installed In this case you have to install it yourself or find someone
to do it for you. In § we give some hints on how to install PVM in /usr/lib

or /usr/local/lib. If you plan to use PVM frequently, you might want to put

PVM˙03.01 March 1, 2007

CONTENTS 5

the libraries into these default directories. Otherwise you have to tell the compiler
explicitly where it can find them:

> cc -o master master.c -lpvm3 -Lpath to your libraries

PVM include files are not in /usr/include Again the best thing to do is put them
there, otherwise compile with,

> cc -o master master.c -lpvm3 -Ipath to your include files

Notice the first character in lpvm3 is a small l as in library, while the first character
in Ipath to your include files is a capital I as in include.

THE PVM CONSOLE

The PVM console is the interface between the parallel virtual machine and the
user. You use it to start and stop processes, to display information about the state
of the virtual machine, and most importantly, to start and stop PVM on local and
remote machines.

Step 1: Starting PVM Log into one of the computers you want to include in
PVM and enter:

> pvm Start PVM from command line

If PVM is properly installed, it will start and respond with its prompt:

pvm> The PVM prompt

Congratulations, you just created a parallel virtual machine of one physical ma-
chine. Of course this is rather useless, so let’s extend our system.

Step 2: Adding hosts This is done from the PVM prompt:

pvm> add hostname Add a host

where hostname is the name of the computer you want to add. This will start PVM
on the specified hosts and, if successful, will produce a message such as:

1 successful

HOST DTID

banana 140000

You can continue to add additional hosts as desired.

Step 3: Checking your configuration You display the configuration of your
parallel virtual machine from the PVM prompt:

pvm> conf

This will give you information about the hosts configured, their PVM identification
number and their architecture.

PVM˙03.01 March 1, 2007

6 CONTENTS

Step 4: Deleting hosts Sometimes it is necessary to remove hosts from the virtual
machine to test or debug a program:

pvm> delete hostname

where hostname is the name of the computer you want to delete.

Step 5: Leaving the console If you are done with setting up your virtual machine,
and if you don’t need any of the other functions of the console, you close the
console but keep PVM running:

pvm> quit Close console, not PVM

Step 6: Stopping PVM To stop PVM after your parallel program has finished,
enter the PVM console, and then from the PVM prompt:

> pvm From Unix shell

pvm> halt From PVM prompt

This stops PVM on all the machines and kills all programs running under PVM.
This is the best and easiest way to stop PVM.

FIRST PVM PROGRAM: MASTER-SLAVE COMMUNICATIONS

Problem: Write a program that determines the names and the local times of all the
physical machines in the virtual machine, and prints that information to standard
output.

Finally we can write and run our a PVM program. The most straightfor-
ward model for writing parallel programs using a message-passing systems such
as PVM is with a master process and a slave process. The master is started by
the user on one machine only. It then starts and controls processes on the other
machines (slaves) that perform the work. The master’s work includes:

• Determining which physical machines are part of the virtual machine.
• Starting a slave process on every physical machine to be used.
• Collecting the results which are sent back by the slaves.
• Printing the results to standard output.

C versions of the master and slave programs are given in Lsts. 1 and 2.

Listing 1 The PVM master PVMcommunMaster.c showing communication.¨ ¥
/∗ PVM master f o r s imple communication ; s t a r t s s l a v e , g e t ’ s t ’ s ∗ /
i n c l u d e <s t d i o . h>
i n c l u d e <pvm3 . h>
main () {
s t r u c t p v m h o s t i n f o ∗ h o s t p ;
i n t r e s u l t , check , i , nhos t , narch , s t i d ;
char buf [6 4] ;
p v m s e t o p t (PvmRoute , PvmRouteDirec t) ; / / communication channel
g e t h o s t n a m e (buf , 20) ; / / g e t master ’ s name

PVM˙03.01 March 1, 2007

CONTENTS 7

p r i n t f ("The master process runs on %s \n" , bu f) ;
/ / g e t & d i s p l a y p a r a l l e l machine c o n f i g u r a t i o n
pvm conf ig (&nhos t , &narch , &h o s t p) ; / / g e t c o n f i g u r a t i o n
p r i n t f ("I found following hosts in your virtual machine\n") ;
f o r (i = 0 ; i < n h o s t ; i ++)
{ p r i n t f ("\t%s\n" , h o s t p [i] . h i name) ; }
f o r (i =0 ; i<n h o s t ; i ++) / / spawn p r o c e s s e s
{ check =pvm spawn ("answer" , 0 , PvmTaskHost , h o s t p [i] . hi name , 1 , &s t i d) ;

i f (! check) p r i n t f ("Couldn’t start on %s\n" , h o s t p [i] . h i name) ; }
r e s u l t =0 ;
w h i l e (r e s u l t <n h o s t)
{ pvm recv (−1 , 2) ; /∗ wait f o r r e p l y message ∗ /

pvm upks t r (buf) ; /∗ unpack message ∗ /
p r i n t f ("%s\n" , bu f) ; /∗ p r i n t c o n t e n t s ∗ /
r e s u l t ++; }

p v m e x i t ; /∗ we are done ∗ /
}§

Each slaves’ work include:

• Determining the name of the machine on which it is running.
• Determining the wall time on this machine.
• Sending a message with this information back to the master.

Listing 2 The PVM slave PVMcommunSlave.c showing communication.¨ ¥
/∗ PVM s l a v e , r e t u r n s machine name & l o c a l t ime ∗ /
i n c l u d e <s t d i o . h>
i n c l u d e <pvm3 . h>
i n c l u d e <t ime . h>
main () {
t i m e t now ;
char name [1 2] , buf [6 0] ;
i n t p t i d ;
p t i d = pvm paren t () ; /∗ the ID of the master p r o c e s s ∗ /
p v m s e t o p t (PvmRoute , PvmRouteDirec t) ;
g e t h o s t n a m e (name , 64) ; /∗ f i n d name of machine ∗ /
now= t ime (NULL) ; /∗ g e t t ime ∗ /
s t r c p y (buf , name) ; /∗ put name i n t o s t r i n g ∗ /
s t r c a t (buf , "’s time is ") ;
s t r c a t (buf , c t i m e (&now)) ; /∗ add time to s t r i n g ∗ /
p v m i n i t s e n d (PvmDataDefau l t) ; /∗ a l l o c a t e message b u f f e r ∗ /
p v m p k s t r (buf) ; /∗ pack s t r i n g i n t o b u f f e r ∗ /
pvm send (p t i d , 2) ; /∗ send b u f f e r to master ∗ /
p v m e x i t ; /∗ s l a v e i s done and e x i t s ∗ /
}§

Let’s do it. Compile the source code for a slave processes:

> cc -o answer PVMcommunSlave.c -lpvm3 Compile C PVM program

For Fortran users, the programs are PVMbugMstr and PVMbugsSlave, and we have
placed all needed commands for setup and execution in a Makefile on the CD: CD¨ ¥
M a k e f i l e f o r MSTR/WRKR program −− u s i n g PVM 3 . 3
PVM’s "architecture" classification -- tailor to your system

PVM˙03.01 March 1, 2007

8 CONTENTS

ARCH = $(PVM_ARCH)
Location and names of PVM files -- tailor to your system
PVMLOC = /usr/local/pvm3
PVMLIB = -L$(PVMLOC)/lib/$(ARCH) -lfpvm3 -lpvm3
Name and options for FORTRAN compiler -- tailor to your system
FC = f77
FFLAGS = -O -I$(PVMLOC)/include

all: PVMbugMstr PVMbugsSlave
PVMbugMstr: PVMbugMstr.o

$(FC) -o $(@) $(FFLAGS) PVMbugMstr.o $(PVMLIB)
PVMbugsSlave: PVMbugsSlave.o

$(FC) -o $(@) $(FFLAGS) PVMbugsSlave.o $(PVMLIB)
strp:

strip PVMbugMstr PVMbugsSlave
clean:

rm -f *.o core *.lst
cleanall:

rm -f PVMbugMstr PVMbugsSlave *.o core *.lst§

Note, it is important that you call the executable answer because this is the name
of the program that the master process tries to start. If you are using computers
of different architectures, then you run this Makefile on one machine of every
architecture, and immediately copy the executable into the architecture-specific
directories you created in your configuration step.

Compilation Compile the source codes to obtain an executable master:

> cc -o master PVMcommunMaster.c -lpvm3 From Unix shell

Fortunately, you have to perform this compilation only once, and that is on the
machine where you want to run the master.

Execution Now that you have: installed and configured PVM, created your par-
allel machine, compiled all programs, and put them into their places, all that is left
is to start the master process from the unix prompt and get results:

> master Start execution from Unix shell

¨ ¥
The m a s t e r p r o c e s s r u n s on mango
I found t h e f o l l o w i n g h o s t s i n your v i r t u a l machine

mango
goophy
daphy
c o c o n u t

mango’s time is Fri May 10 13:10:50 2007
daphy’s t ime i s F r i May 10 1 3 : 1 5 : 4 2 2007
c o c o n u t’s time is Fri May 10 13:15:46 2007
goophy’s t ime i s F r i May 10 1 3 : 1 7 : 0 1 2007§

Warning! At some point PVM may get confused. In those case it’s a good idea to
stop PVM and start it again. Sometimes in order to restart PVM, you may have to

PVM˙03.01 March 1, 2007

CONTENTS 9

change to the directory /tmp and remove some of the PVM files you have created
there (you can issue a long list command ls -l to see the names, owners, and
creation times of files, and remove the files with the rm command).

Compiling Slave Programs On Different Machines

Creating all the necessary slave executables requires the following steps:

1. Compile a slave process on ARCH1 from the source directory:
> cc -o answer PVMcommunSlave.c -lpvm3 Compile on architecture 1

This creates the program answer in the current directory. Copy the exe-
cutable into the directory for architecture 1’s PVM executables:
> cp answer $HOME/pvm3/bin/ARCH1

2. Compile a slave process on architecture 2 from the source directory:
> cc -o answer PVMcommunSlave.c -lpvm3 Compile on architecture 2

This creates the program answer in the current directory. Copy the exe-
cutable into the directory for architecture 2’s PVM executables:
> cp answer $HOME/pvm3/bin/ARCH2

This leaves us with two architecture-specific programs with the same name
in different directories where PVM will find them.

THE BIFURCATION MAP; TRIVIALLY PARALLEL

The logistics map (§ ??) is one of many chaotic systems whose study would be
nearly impossible without the extensive use of computational resources. It is de-
scribed by the simple equation,

xn+1 = µxn(1− xn). (0.1)

This produces the bifurcation diagram in Fig. 1 with the procedure outlined in § ??,
and repeated here:

1. Start at µ = 1.0.
2. Pick an arbitrary starting value for x0.
3. Use this xi to calculate the next value xi+1 in the sequence (0.1).
4. Repeat the cycle 200 times to eliminate transient behaviors.
5. Repeat the cycle another 200 times, but now save the x values.
6. Increase µ by a small amount, say 0.01, and repeat the process from step 2

until µ = 4 is reached.

PVM˙03.01 March 1, 2007

10 CONTENTS

The fact that the initial value for x is arbitrary explains why this problem is perfect
for parallel processing. This means that the calculations for different µ values
are independent and so can be run on different processors without any message
passing. Again we will use the master and slave model for this problem.

The basic tasks of the master are trivial:

• Determine the configuration of the virtual machine.
• Start the slave processes on all the physical machines.
• Send the general parameters to slaves.
• Split the µ range into parts.
• Send the ranges of µ values to the slaves.
• Continue the computation until all µ values are covered.
• Wait for the slaves to finish their calculations.
• Tell the slaves to shut down.

Some points require additional discussion. First, each slave process also
needs three parameters to perform its work. It has to know how long to wait to
avoid transients, how many x values to calculate, and in how many subranges it
should divide the µ range it is working on. Instead of building these values into
the slave program, we make it easy to modify the program by having the master
send these parameters to the slaves.

Second, we need to decide the number of subdivisions n into which we
divide the µ range. This directly affects the performance of our parallel program;
if we make n too large, then too much time is spent communicating with the slaves,
rather than having the slaves busy working; if we make n too large, then all the
processors may have to wait idly a long time for the last process to finish. The best
value for n depends on the amount of overhead connected to starting a new task,
the computing time required for each task, and the number of physical machines
in your virtual machine. In this tutorial you should try different n values and see
how it affects the total time.

Lst. 3 gives a PVM master program in C for creating a bifurcation plot.

Listing 3 The PVM master program PVMbugsMaster.c for creating a bifurcation plot.¨ ¥
/∗ master program f o r b i f u r c a t i o n diagram of l o g i s t i c map∗ /
i n c l u d e <s t d i o . h>
i n c l u d e <pvm3 . h>
d e f i n e min 1 /∗ minimum f o r m ∗ /
d e f i n e max 4 /∗ maximum f o r m ∗ /
d e f i n e s t e p 0 . 1 /∗ m range f o r s l a v e ∗ /
d e f i n e n s t e p 100 .0 /∗ number of s t e p s f o r s l a v e ∗ /
d e f i n e s k i p 200 /∗ # r e s u l t s to s k ip ∗ /
d e f i n e c o u n t 300 /∗ # r e s u l t s to save ∗ /
main () {
s t r u c t p v m h o s t i n f o ∗ h o s t p ;
i n t b u f i d , check , dum , i , nhos t , narch , p t i d , s t i d ;
char name [6 4] ;

PVM˙03.01 March 1, 2007

CONTENTS 11

dou b l e buf [5] , m;
p t i d = pvm mytid () ; /∗ g e t PVM ID number ∗ /
pvm conf ig (&nhos t , &narch , &h o s t p) ; /∗ c o n f i g u r e v i r t u a l machine ∗ /
g e t h o s t n a m e (name , 64) ;
p r i n t f ("The master process runs on %s \n" , name) ;
p r i n t f ("I found the following hosts in your virtual machine\n") ;
f o r (i = 0 ; i < n h o s t ; i ++)
{ p r i n t f ("\t%s\n" , h o s t p [i] . h i name) ; }
p r i n t f ("\nStarting slaves\n") ;
f o r (i =0 ; i<n h o s t ; i ++) /∗ s t a r t s l a v e s on a l l h o s t s ∗ /
{ check =pvm spawn ("mapslave" , 0 , PvmTaskHost , h o s t p [i] . hi name , 1 , &s t i d) ;

i f (! check)
{ p r i n t f ("Couldn’t start process on %s\n" , h o s t p [i] . h i name) ;

nhos t−−;
} }

p v m s e t o p t (PvmRoute , PvmRouteDirec t) ;
buf [2] = n s t e p ; /∗ parameters f o r s l a v e s ∗ /
buf [3] = s k i p ;
buf [4] = c o u n t ;
f o r (m=min ; m<=max ; m+= s t e p) /∗ m parameter f o r s l a v e s ∗ /
{ p r i n t f ("%f\n" , m) ; /∗ some feedback ∗ /

b u f i d =pvm recv (−1 , 2) ; /∗ s l a v e i s ready ∗ /
p v m b u f i n f o (b u f i d , &dum , &dum , &s t i d) ; /∗ which machine? ∗ /
buf [0] =m; /∗ min and max m ∗ /
i f ((m+ s t e p)<max) buf [1] =m+ s t e p ;
e l s e buf [1] = max ;
p v m i n i t s e n d (PvmDataDefau l t) ; /∗ send parameters ∗ /
pvm pkdouble (buf , 5 , 1) ; /∗ to s l a v e ∗ /
pvm send (s t i d , 1) ;

}
f o r (i =0 ; i<n h o s t ; i ++) /∗ wait f o r f i n a l r e s u l t s ∗ /
{ b u f i d =pvm recv (−1 , 2) ; /∗ wait f o r message ∗ /

p v m b u f i n f o (b u f i d , &dum , &dum , &s t i d) ; /∗ which machine ∗ /
p v m i n i t s e n d (PvmDataDefau l t) ; /∗ t e l l s l a v e to shut down ∗ /
pvm send (s t i d , 0) ;

}
p v m e x i t ;
}§

The slave program is nearly identical to the program used for calculating the
bifurcation map sequentially. It:

1. Informs the master that it is ready to work.
2. Receives µ values m min, m max, steps, skip, and count.
3. Sets m = m min.
4. Calculates and skips successive y values.
5. Calculates and saves another count y values.
6. Increases m by (m max-m min)/steps.
7. Goes to step 4 and repeats the whole process until m = m max.
8. Goes to step 1 and starts over until the master says to shut down.

If you compare this to our sequential bug program, you will notice that all we had
to do is add in message passing. However, we also had to be careful to have a
different name for the output file on each slave. The source code for a slave is

PVM˙03.01 March 1, 2007

12 CONTENTS

given in Lst. 4

Listing 4 The PVM slave program PVMbugsSlave.c for creating a bifurcation plot.¨ ¥
/∗ s l a v e program f o r b i f u r c a t i o n p l o t o f l o g i s t i c s map ∗ /
i n c l u d e <s t d i o . h>
i n c l u d e <pvm3 . h>
FILE ∗ o u t p u t ; /∗ i n t e r n a l f i l e name ∗ /
main () {
dou b l e m, s e n t [5] , new , o l d ;
i n t b u f i d , dum , p t i d , type , x , xsk ip , xc ou n t ;
char name [3 0] , tmp [1 0] , tmp2 [1 0] ;
p t i d = pvm paren t () ;
p v m s e t o p t (PvmRoute , PvmRouteDirec t) ; /∗ t e l l master we ’ re ready ∗ /
p v m i n i t s e n d (PvmDataDefau l t) ;
pvm send (p t i d , 2) ;
g e t h o s t n a m e (tmp2 , 10) ;
do /∗ wait f o r news from master ∗ /
{ b u f i d =pvm recv (p t i d , −1) ; /∗ any message from master ∗ /

p v m b u f i n f o (b u f i d , &dum , &type , &dum) ; /∗ kind of message ? ∗ /
i f (t y p e) /∗ more work a r r i v e d ∗ /
{ pvm upkdouble (s e n t , 5 , 1) ;

x s k i p = s e n t [3] ; /∗ sk ip t r a n s i e n t s ∗ /
xc ou n t = s e n t [4] ; /∗ # p o i n t s to record ∗ /
s t r c p y (name , tmp2) ; /∗ c r e a t e unique f i l e name ∗ /
s p r i n t f (tmp , "%f" , s e n t [1]) ;
s t r c a t (name , tmp) ;
s t r c a t (name , ".dat") ;
o u t p u t = fopen (name , "w") ;
f o r (m= s e n t [0] ; m<=s e n t [1] ; m+=(s e n t [1]− s e n t [0]) / s e n t [2])
{ o l d = 0 . 5 ; /∗ a r b i t r a r y s t a r t i n g va lue ∗ /

f o r (x =1; x<=x s k i p ; x ++) o l d =m∗ o l d ∗(1− o l d) ; /∗ rm t r a n s i e n t s ∗ /
f p r i n t f (o u t p u t , "%f\t%f\n" , m, o l d) ;
f o r (x =1; x<=x co un t ; x ++) /∗ record xcount p o i n t s ∗ /
{ new=m∗ o l d ∗(1− o l d) ; /∗ avoid some doubles ∗ /

i f (new != o l d) f p r i n t f (o u t p u t , "%f\t%f\n" , m, new) ;
o l d =new ;

} }
f c l o s e (o u t p u t) ;
p v m i n i t s e n d (PvmDataDefau l t) ; /∗ t e l l master we ’ re ready ∗ /
pvm send (p t i d , 2) ;

}
} w h i l e (t y p e) ;
p v m e x i t ; /∗ type =0 means we are done ∗ /
}§

Results: A Parallel Plot of Bifurcation Map

In Fig. 1 we show the bifurcation plot created in parallel, with different colors
used to indicate work done by different machines. If you count how many areas
have a specific color, you will notice that different machines completed a different
number of tasks:

PVM˙03.01 March 1, 2007

CONTENTS 13

Figure 1 A bifurcation diagram for the logistics map constructed with PVM. The regions of different
shadings

Machine Architecture Number of Tasks
daphy DEC alpha 200 9
goophy DEC alpha 3000 8
mango IBM RS6000 7
coconut IBM RS6000 6

Although this table seems to indicate that coconut has two thirds the speed of
daphy, this is not a controlled experiment. Because these are multi-user machines,
other users might have used one or more of the machines at the same time, and
additional tasks such as webserving, fileserving, mail were also occurring.

MONTE CARLO INTEGRATION, TRIVIAL PARALLELIZATION

In Chap. ?? we performed a Monte Carlo integration of the area of a geometric
figure residing within a square, such as Fig. 2. The computation requires you to
pick random points within the square and count the total number of points that fall
within the figure. The area is just the ratio of the points inside the figure to the
total number of points times the known area of the box. Here we made the borders
of the figure analytic functions for each quadrant:

1. upper right circle of r = 1/2, center (0.5, 0.5), y = −√−x2 + x + 0.5
2. lower right quadratic, y = 1.2x2 − 0.3
3. lower left ellipse, y = −

√
(1− x2/0.25)0.09

4. upper left circle with r = 1/2, center (0,0), y =
√

0.25− x2

PVM˙03.01 March 1, 2007

14 CONTENTS

Figure 2 The figure whose area we compute via a parallel Monte-Carlo integration.

We use different machines for each quadrant, and if available, more than one ma-
chine for each quadrant. For example, for quadrant 1:

1. Pick two random numbers (x, y) in the range 0 to 1/2.
2. Use the border relation to decide if point is within figure.
3. If inside, increase a variable by one.

The master program:

1. Determines the configuration of the virtual machine.
2. Starts as many different slave processes as there are physical machines.
3. If a slave is done, collects the result and checks if there is another task to be

calculated for this quadrant.
4. If further tasks are required of a slave, tells it to continue.
5. If no further task is required, starts a slave for the quadrant in which there

remains the largest number of unfinished tasks.
6. Continues with step 3 until all tasks for all quadrant are completed.

Again we split up the work in small pieces in order to be flexible and to provide
better load balance in case some machines are much faster than others (when a
fast machine finishes its assignment, it helps out a slower one). Let’s say we want
to sample a total of one million points. We do this by sampling 250,000 points
in each quadrant, with 50,000 points assigned to each slave. A program for the
master is given in Lst. 5.

Listing 5 The PVM master program PVMmonteMaster.c for Monte Carlo integration.¨ ¥
/∗ p a r a l l e l Monte Carlo i n t e g r a t i o n master ∗ /
i n c l u d e <s t d i o . h>
i n c l u d e <pvm3 . h>
d e f i n e t a s k 100 /∗ number of t a s k s per quadrant ∗ /

PVM˙03.01 March 1, 2007

CONTENTS 15

main () {
s t r u c t p v m h o s t i n f o ∗ h o s t p ;
i n t b u f i d , check , dum , h t i d , nhos t , narch , p t i d , s t i d , t y p e ;
i n t back [1] , done [5] , i , j , q , k , min t , min q , r e s u l t ;
char name [2 0] , name2 [2 0] , tmp [2] ;
dou b l e a r e a ;
p t i d = pvm mytid () ; /∗ g e t your PVM ID number ∗ /
pvm conf ig (&nhos t , &narch , &h o s t p) ; /∗ c o n f i g o f v i r t u a l machine ∗ /
g e t h o s t n a m e (name , 20) ;
p r i n t f ("The master process runs on %s \n" , name) ;
p r i n t f ("I found following hosts in your virtual machine\n") ;
f o r (i = 0 ; i < n h o s t ; i ++)
{ p r i n t f ("\t%s\n" , h o s t p [i] . h i name) ; }
p r i n t f ("\nStarting slaves\n") ;
f o r (i =0 ; i <4; i ++) done [i] = 0 ; /∗ r e s e t some c o u n t e r s ∗ /
i =0 ;
j =0 ;
r e s u l t =0 ;
do
{ i ++; /∗ s t a r t s l a v e s 1 , 2 , 3 , 4 , 1 , . . . ∗ /

i f (i ==5) i =1 ; /∗ u n t i l a l l machines have a ∗ /
s t r c p y (name , "monteslave") ; /∗ job running ∗ /
s p r i n t f (tmp , "%i" , i) ;
s t r c a t (name , tmp) ;
check =pvm spawn (name , 0 , PvmTaskHost , h o s t p [j] . hi name , 1 , &s t i d) ;
i f (! check)
{ p r i n t f ("Couldn’t start process on %s\n" , h o s t p [j] . h i name) ;

nhos t−−; }
e l s e
{ p r i n t f ("started slave for quadrant %i on %s\n" , i , h o s t p [j] . h i name)

;
done [i] + + ; }

j ++;
} w h i l e ((j<n h o s t) && (j <4∗ t a s k)) ;
f o r (i = j ; i <4∗ t a s k ; i ++) /∗ wait f o r s l a v e s to f i n i s h to ∗ /
{ b u f i d =pvm recv (−1 , −1) ; /∗ any machine any message ∗ /

p v m b u f i n f o (b u f i d , &dum , &type , &s t i d) ; /∗ from which quadrant ? ∗ /
pvm upkin t (back , 1 , 1) ; /∗ the r e s u l t o f the task ∗ /
r e s u l t += back [0] ;
i f (done [t y p e]< t a s k) /∗ t h e r e are s t i l l open t a s k s ∗ /
{ p v m i n i t s e n d (PvmDataDefau l t) ; /∗ t e l l s l a v e to co n t i n u e ∗ /

pvm send (s t i d , 1) ;
done [t y p e] + + ; }

e l s e /∗ no open tasks , s t a r t new s l a v e ∗ /
{ p r i n t f ("quadrant %i is done\n" , t y p e) ;

h t i d = p v m t i d t o h o s t (s t i d) ; /∗ f i n d hos t o f t h i s s l a v e ∗ /
f o r (k =0; k<n h o s t ; k ++)
{ i f (h t i d == h o s t p [k] . h i t i d) s t r c p y (name2 , h o s t p [k] . h i name) ; }
p v m i n i t s e n d (PvmDataDefau l t) ; /∗ t e l l s l a v e to shut down ∗ /
pvm send (s t i d , 0) ;
m i n t =done [1] ; /∗ f i n d quadrant with most ∗ /
min q =1; /∗ open t a s k s − t h i s way ∗ /
f o r (k =2; k<5; k ++) /∗ the f a s t e s t machine ∗ /
{ i f (done [k]<m i n t) /∗ new quadrant or + slow ∗ /

{ m i n t =done [k] ; /∗ a f t e r i t ’ s done ∗ /
min q=k ; } }

s t r c p y (name , "monteslave") ; /∗ which s l a v e to s t a r t ∗ /
s p r i n t f (tmp , "%i" , min q) ;
s t r c a t (name , tmp) ;
pvm spawn (name , 0 , PvmTaskHost , name2 , 1 , &s t i d) ;

PVM˙03.01 March 1, 2007

16 CONTENTS

p r i n t f ("started slave for quad %i on %s\n" , min q , name2) ;
done [min q] + + ;

} }
f o r (i =0 ; i<n h o s t ; i ++) /∗ wait f o r l a s t t a s k s to end ∗ /
{ b u f i d =pvm recv (−1 , −1) ; /∗ any machine / message ∗ /

p v m b u f i n f o (b u f i d , &dum , &dum , &s t i d) ; /∗ where from ∗ /
pvm upkin t (back , 1 , 1) ;
r e s u l t += back [0] ;
p v m i n i t s e n d (PvmDataDefau l t) ; /∗ t e l l s l a v e to shut down ∗ /
pvm send (s t i d , 0) ;

}
a r e a = r e s u l t ; /∗ c a l c u l a t e f i n a l r e s u l t ∗ /
p r i n t f ("the area is %f\n" , a r e a / (t a s k ∗4∗50000)) ;
p v m e x i t ;
}§

Even though we need a different slave programs for each quadrant, they are
simple and differ by only a few of lines. Each slave:

1. Generates two random numbers in the appropriate quadrant.
2. Uses the border relation for this quadrant to check if the point is inside the

figure.
3. If point is inside the figure, increases a counter by one.
4. Goes back to step 1 until a set number of points has been checked.
5. Sends the value of the counter back to the master.
6. Asks the master if there are more points to check for this quadrant.
7. If more points are needed, reset all variables and start over.

The only things you have to change for each slave are the range of the random
numbers in order for the points to fall in the right quadrant and the relation de-
scribing the border of the figure for this quadrant. A C program for the quadrant 1
slave is given in Lst. 6.

Listing 6 The PVM slave program PVMmonteSlave1.c for quadrant-1 Monte Carlo integration.¨ ¥
/∗ p a r a l l e l Monte Carlo i n t e g r a t i o n , Quadrant 1 S lave ∗ /
i n c l u d e <s t d i o . h>
i n c l u d e <math . h>
i n c l u d e <pvm3 . h>
d e f i n e s t e p s 50000
d e f i n e xmin 0 . 0
d e f i n e xmax 0 . 5
d e f i n e ymin 0 . 0
d e f i n e ymax 0 . 5
dou b l e f (dou b l e x) /∗ border f u n c t i o n ∗ /
{ r e t u r n (− s q r t (−x∗x+x) + 0 . 5) ; }
main () {
i n t i , p t i d , b u f i d , dum , type , send [1] ;
dou b l e x , y ;
s r a n d 4 8 (pvm mytid ()) ; /∗ seed random genera tor ∗ /
p t i d = pvm paren t () ;
do
{ send [0] = 0 ;

f o r (i =1 ; i <=s t e p s ; i ++)

PVM˙03.01 March 1, 2007

CONTENTS 17

{ x= drand48 () ∗ (xmax+xmin) ; /∗ random p o i n t s in the ∗ /
y= drand48 () ∗ (ymax+ymin) ; /∗ quadrant ∗ /
i f (f (x)<=y) send [0] + + ; /∗ p o i n t i s i n s i d e the f i g u r e ∗ /

}
p v m i n i t s e n d (PvmDataDefau l t) ; /∗ send r e s u l t back to master ∗ /
pvm pkin t (send , 1 , 1) ;
pvm send (p t i d , 1) ;
b u f i d =pvm recv (p t i d , −1) ; /∗ any message from master ∗ /
p v m b u f i n f o (b u f i d , &dum , &type , &dum) ; /∗ more work ? ∗ /

}w h i l e (t y p e) ;

p v m e x i t ; /∗ type =0 means we are done ∗ /
}§

Figure 3 The area of a geometric figure calculated in parallel via Monte Carlo integration in com-
parison with the exact answer.

The results of the computation are shown in Fig. 3. We used Maple to find
the analytic result for the area, area=0.4678097245, which means that the figure
fills approximately 47% of the unit square. To compare this result to the Monte
Carlo one, we ran the parallel program several times increasing the number of
points we checked from only five hundred thousand per quadrant to twenty-five
million points per quadrant. As it is typical for Monte Carlo methods, the numeri-
cal result oscillates around the true value, but with an amplitude that decreases as
the number of points increases.

INSTALLING PVM HINTS

The best way to install PVM is to get a nice system administrator to do it. This
saves you work and makes it possible for other people on your system to use PVM.
However, if you are the nice system administrator, your system administrator is

PVM˙03.01 March 1, 2007

18 CONTENTS

not nice, or you can’t find him because he is on his well-earned vacation in the
Caribbeans, then here are the things you have to do.

1. Download the software package for pvm and xpvm from
http://www.netlib.org/pvm3/

http://www.netlib.org/pvm3/xpvm/

http://www.csm.ornl.gov/pvm/

2. Find a location on your computer for PVM. If you are the system adminis-
trator installing PVM so that all users can use it, then /usr/local/pvm3 is
a natural choice. Otherwise create a directory pvm3 in your home directory
and put the downloaded software in there.

3. Unpack and build PVM. PVM is distributed in various packed and com-
pressed formats (indicated by the file name extension). For example, if your
file name is pvm3.3.10.tar.gz. then you have to do the following:
a. gunzip pvm3.3.10.tar.gz

b. tar -xvf pvm3.3.10.tar

c. Set the environment variable PVM ROOT to the directory where you put the
PVM software by adding to your .cshrc file:

setenv PVM ROOT $HOME/pvm3 One way

setenv PVM ROOT /usr/local/pvm3 Another way

d. If you use csh:
PVM ROOT=$HOME/pvm3

PVM DPATH=$PVN ROOT/lib/pvmd

export PVM ROOT PVM DPATH

e. or, if you use sh or ksh, include in your .profile file:
PVM ROOT=/usr/local/pvm3

PVM DPATH=$PVN ROOT/lib/pvmd

export PVM ROOT PVM DPATH

f. Enter make in the PVM ROOT directory. This will build the libraries and
binaries required to run PVM. If everything compiles correctly, you are
ready to go.

g. Move the files. If you have root access, then you should
copy the PVM libraries libfpvm3.a, libgpvm3.a, libpvm3.a from
pvm3/lib/$PVN ARCH into /usr/lib, where the compiler can find
them. For the same reason, put the include files fpvm3.h, pvm3.h,

pvmsdpro.h, pvmtev.h into /usr/include.

PVM˙03.01 March 1, 2007

CONTENTS 19

PVM COMMAND REFERENCE

Sending & Receiving Messages
Routine Name Operation
pvm barrier Blocks calling process until all processes in a group calls
pvm bcast Broadcasts data in active message buffer
pvm bufinfo Returns information about message buffer
pvm freebuf Disposes of a message buffer
pvm getrbuf Returns message buffer identifier for active receive buffer
pvm getsbuf Returns message buffer identifier for active send buffer
pvm initsend Clears default send buffer & specify message encoding
pvm mcast Multicasts data in active message buffer
pvm mkbuf Creates a new message buffer
pvm nrecv Non-blocking receive
pvm pack Packs active message buffer with proper data arrays
pvm precv Receives message directly into buffer
pvm probe Checks if message has arrived
pvm psend Packs and send data in one call
pvm recv Receives message
pvm send Immediately sends data in active message buffer
pvm setrbuf Switches active receive buffer and saves previous buffer
pvm setsbuf Switche active send buffer
pvm trecv Receive with timeout
pvm unpack Unpack active message buffer into proper data arrays

Controlling Virtual Machine
Routine Name Operation
pvm addhosts Adds hosts to VM
pvm catchout Catches output from child tasks
pvm config Returns information on present VM configuration
pvm delhosts Deletes hosts from VM
pvm exit Tells pvmd that leaving PVM
pvm getopt Returns value of libpvm options
pvm gettid Returns tid of process
pvm halt Shuts down entire PVM system
pvm hostsync Get time-of-day clock from PVM host
pvm kill Terminates specified PVM process
pvm mstat Returns status of a host in VM
pvm mytid Returns the tid of calling process
pvm notify Requests notification of PVM event
pvm parent Returns tid of parent process
pvm perror Prints message describing last error
pvm pstat Returns status of specified process
pvm setopt Sets libpvm options
pvm spawn Starts new PVM process
pvm start pvmd Starts new PVM daemon
pvm tasks Returns information about tasks on VM
pvm tidtohost Returns host of specified process

PVM˙03.01 March 1, 2007

20 CONTENTS

Advanced Features & Group Operations
Routine Name Operation
pvm archcode Returns data code for an architecture name
pvm delete Deletes data from pvmd database
pvm gather Gathers messages from group
pvm getfds Gets file descriptors in use by PVM
pvm getinst Returns instance number of a process
pvm getmwid Gets wait ID of a message
pvm gettmask Gets trace mask of task or its children
pvm gsize Returns number of members in named group
pvm insert Stores data in pvmd database
pvm joingroup Enrolls calling process in named group
pvm lookup Retrieves data from pvmd database
pvm lvgroup Unenrolls calling process from named group
pvm recvf Redefines comparison function that accepts messages
pvm reduce Performs reduction operation over group members
pvm reg hoster Registers task as PVM slave starter
pvm reg rm Registers task as PVM resource manager
pvm reg tasker Registers task as PVM task starter
pvm scatter Sends data to each member of group
pvm sendsig Sends signal to another PVM process
pvm setmwid Sets wait ID of message
pvm settmask Sets trace mask of task or its children

After starting the PVM console by typing pvm at the unix prompt, you can use the following
commands:

PVM˙03.01 March 1, 2007

CONTENTS 21

Available Commands for the PVM Console
add hostname Add computer specified by hostname to virtual machine
alias Defines or lists command aliases (same as unix command)
conf Returns detils of present configuration of virtual machine
delete hostname Removes computer hostname from virtual machine

(parallel tasks still running on machine will be stopped)
echo arg Returns arg (expands alias).
halt Kills all PVM processes, & shuts down PVM (a proper end)
help arg Returns description of command; list of command if no arg
id Prints console task ID
jobs Lists jobs running on virtual machine
kill tid Kills process tid; kill -c tid also kills children processes
mstat hostname Shows status of the computer hostname
ps Lists processes running on the virtual machine; options:

-a lists processes all computers, default = local
-hhost lists processes on host
-nhost lists processes with task ID host
-l use long output format
-x list all processes including console nulls

pstat tid Shows status of task specified by tid
reset Kills all PVM processes except console and PVM daemons
setenv Displays or sets environment variables (same as Unix)
sig Don’t use if you are not really sure what this does
spawn arg Starts program arg; takes following options:

-count count = number of tasks to start
-host start task on host
-ARCH start task on hosts of type ARCH
-? enable debugging
-> redirect task output to console
-> file redirect task output to file
->> file append task output to file
-@ trace this job, display trace information on console
-@file trace this job, write trace information to file

trace Sets or displays trace event mask
unalias arg Removes defined alias arg
version Returns version of PVM being used

A. GEIST, A, A. BEGUELIN, JACK DONGARRA, WEICHENG JIANG, ROBERT
MANCHEK, AND VAIDY SUNDERAM (1994), PVM: Parallel Virtual Machine A
User’s Guide and Tutorial for Networked Parallel Computing, Oak Ridge National
Laboratory, Oak Ridge, TN.

