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OSU Physics Department
Comprehensive Examination #135

Solutions

Wednesday, September 25 and Thursday, September 26, 2019

Fall 2019 Comprehensive Examination

Quantum Mechanics 9 AM-12 PM Wednesday, September 25
Electricity and Magnetism 1 PM-4 PM Wednesday, September 25

Statistical Mechanics 9 AM-12 PM Thursday, September 26
Classical Mechanics 1 PM-4 PM Thursday, September 26

General Instructions

This Fall 2019 Comprehensive Examination consists of four separate parts of two
problems each, and you have three hours to work on each part. Each problem
caries equal weight (20 points). Work carefully, indicate your reasoning, and
display your work clearly. Even if you do not complete a problem, it might be
possible to obtain partial credit—especially if your understanding is manifest.
Use no scratch paper; do all work on the provided pages, work each problem in its
own labeled pages, and be certain that your chosen student letter (but not your
name) is on the header of each page of your exam, including any unused pages.
If you need additional paper for your work, use the blank pages provided. Each
page of work should include the problem number, a page number, your chosen
student letter, and the total number of pages actually used. Be sure to make
note of your student letter for use in the remaining parts of the examination.

If something is omitted from the statement of the problem or you feel there
are ambiguities, please get up and ask your question quietly and privately, so
as not to disturb the others. Put all materials, books, and papers on the floor,
except the exam and the collection of formulas distributed with the exam. Cal-
culators are not allowed except when a numerical answer is required—calculators
will then be provided by the person proctoring the exam. Please staple and re-
turn all pages of your exam—including unused pages—at the end of the exam.

Wednesday morning Problem 0



Let the matrix representation of the Hamiltonian of a three-state system be 

 

 

H !
E0 0 A
0 E1 0
A 0 E0
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using the basis states 1 , 2 , and 3 . 

 a) If the state of the system at time t = 0 is ψ (0) = 2 , what is the probability 
that the system is in state 2  at time t? 

 b) If, instead, the state of the system at time t = 0 is ψ (0) = 3 , what is the 
probability that the system is in state 3  at time t? 
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First we need to find the energy eigenvalue and eigenstates.  Diagonalizing H yields the 
eigenvalues 

 

E0 − λ 0 A
0 E1 − λ 0
A 0 E0 − λ
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= 0   ⇒   E0 − λ( )2 E1 − λ( )− A2 E1 − λ( ) = 0 

 ⇒   E1 − λ( ) E0 − λ( )2 − A2{ } = 0   ⇒   λ = E1,E0 + A,E0 − A

 

and the eigenvectors 
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   ⇒   

E0u + Aw = E1u
E1v = E1v

Au + E0w = E1w
   ⇒   u = w = 0

u 2 + v 2 + w 2 = 1   ⇒    v 2 = 1   ⇒   u = 0,v = 1,w = 0   ⇒    E1 = 2 !
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   ⇒   

E0u + Aw = E0 ± A( )u
E1v = E0 ± A( )v

Au + E0w = E0 ± A( )w
   ⇒   v = 0,u = ±w

u 2 + v 2 + w 2 = 1   ⇒   2 u 2 = 1   ⇒   u = 1
2 ,v = 0,w = ± 1

2

   ⇒    E0 ± A = 1
2 1 ± 1
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(a)  The initial state is 

 

 

ψ 0( ) = 2 = E1 !  
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The time evolved state is  

 

 

ψ t( ) = e− iE1t ! E1 "  
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The probability of measuring the system to be in state 2  is 
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P2 = 2ψ t( ) 2

= 2 e− iE1t 2! 2
2
= e− iE1t 2!

2
= 1  

 (b)  The initial state is 

 

 

ψ 0( ) = 3 = 1
2 E0 + A − E0 − A( ) !  
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The time-evolved state is  

 

 

ψ t( ) = 1
2 e− i E0 +A( )t ! E0 + A − e− i E0 −A( )t ! E0 − A( )
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The probability of measuring the system to be in state 3  is 

 
  
P3 = 3ψ t( ) 2

= 1
2 e

− iE0t !2cos At !( ) 2 = cos2 At !( ) = 1
2 1+ cos 2At !( )( )  
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Consider the semi-infinite square potential energy well: 

 V x( ) =
∞
0
V0

⎧

⎨
⎪

⎩
⎪

x < 0
0 ≤ x ≤ a
x > a

 

a) Find the transcendental equation for the bound state energies for a particle of 
mass m in this potential well. 

b) Sketch the ground-state wave function.  Describe its key features. 
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a)  The energy eigenvalue equation is 

 
 
− !

2

2m
d 2

dx2
+V
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⎠⎟
ϕE x( ) = EϕE x( )  

It is useful to define a wave vector k inside the well 

 
 
k = 2mE

!2
 

and a similar constant outside the well (x > a) 

 
 
q = 2m

!2
V0 − E( ) . 

For bound states, 0 < E <V0 , and therefore both k and q are real. We use these two 
constants to rewrite the energy eigenvalue equation: 

 

d 2ϕE x( )
dx2

= −k2ϕE x( ) inside box

d 2ϕE x( )
dx2

= q2ϕE x( ) outside box
 

For x < 0, the wave function must be zero.  The energy eigenstates must be constructed 
by connecting solutions in the three regions.  We write the general solution as 

 ϕE x( ) =
0,  for x < 0

C sin kx + Dcoskx,  for 0 < x < a

Feqx +Ge−qx ,  for x > a

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

The solutions in the three regions must satisfy boundary conditions where the regions 
connect.  At x = 0, only the wave function continuity is required: 

 C sin k0 + Dcosk0 = 0 ⇒ D = 0  

To ensure normalizability, the growing exponential is not allowed, so F = 0.  At x = a, we 
use both the wave function and the derivative conditions: 

 
C sin ka = Ge−qa

Ck coska = −Gqe−qa
 

Dividing the 2 equations gives 

 tan ka = − k
q

 

In terms of the allowed energies, this transcendental equation is 
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tan a 2mE
!2

⎛

⎝⎜
⎞

⎠⎟
= −

2mE
!2

2m
!2

V0 − E( )
= − E

V0 − E
 

A numerical or graphical solution is required.  That exercise is left to the reader. 
 
b) The ground state wave function is shown below.  Important features are: 
 i) Zero at origin where potential goes to infinity (and beyond). 
 ii) Asymptotically approaches zero as x goes to infinity to ensure normalizability. 
 iii) Inflection point at x = a, where potential changes from below E to above E. 
 
 
 
 

0 a
x

Solution to problem 2 7

.



Problem 3 8

Suppose a semi-infinite slab extending from y = −b to y = b (and infinite in the
x- and z- directions) carries a volume current density

~J = J0
|y|
b

ẑ.

(a) Find the magnetic field ~B everywhere, inside and outside of the slab.

(b) Sketch ~B.

(c) Make sure your sketch makes good physical sense. Explain.
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Suppose a semi-infinite slab extending from y = −b to y = b (and infinite in the
x- and z- directions) carries a volume current density

~J = J0
|y|
b

ẑ.

(a) Find the magnetic field ~B everywhere, inside and outside of the slab.

(b) Sketch ~B.

(c) Make sure your sketch makes good physical sense. Explain.

Solution: .
This problem is all about Ampere ’s law, ∇× ~B = µ0

~J , which follows from the
Maxwell equation ∇× ~B = µ0

~J+µ0ε0∂ ~E/∂t applied to static fields. Integrating
over a surface spanning a chosen “Amperian loop” and applying Stokes theorem,
this gives

∮
~B · d~l = µ0

∫
~J · d~a ≡ µoIenclosed, where the line integral is taken

around the loop in a sense related by the right-hand rule to the normal direction
chosen to calculate the integral giving the flux of current through the surface
(aka the current enclosed by the loop).

(a) This is easier if you do parts (b-c) first, so read that now. You need
the figure above to understand how to do the maths properly. Once you
have some intuition for the shape of the resulting field, you should be
able to recognize that the proper thing to do is apply Ampere’s law by
integrating it over a rectangular surface with sides parallel to the x- and
y-axes and symmetric about the x-axis, and apply Stokes’ theorem to turn
the integral of the curl over the surface to a line integral – the “Amperian
loop” – around its boundary. With the normal to the rectangle chosen
outward along the z-axis, that line integral is counterclockwise around
the loop.1 Since the field is purely in the x-direction, only the integral
of ~B along the top and bottom contributes, and the integral is trivial

1Since you know the field is zero for y = 0, you could just as well choose an Amperian loop
half the size, one side of which runs along y = 0 instead of at negative y.
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because the field does not vary in the x-direction. Thus, integrating over
the surface shown and applying Stokes’ theorem,

∇× ~B = µ0
~J∫

∇× ~B · d~a = µ0

∫
~J · d~a∮

~B · d~l = µ0

∫
~J · d~a (≡ µ0Ienc)

−Bx(y) · l +Bx(−y) · l =
µ0J0
b

∫ l

0

dx

∫ y

−y
dy |y| (where y ≤ b)

−2Bx(y) · l = 2µ0J0
l

b

∫ y

0

dy y (y ≤ b)

Bx(y) = −µ0J0
1

b

{
1
2y

2 y ≤ b (inside the slab)
1
2b

2 y > b (outside the slab)
.

and Bx(−y) = −Bx(y). Or,

~B(y) =
1

2
µ0J0b


−1 y > b

−
(
y
b

)2
0 ≤ y ≤ b

+
(
y
b

)2 −b ≤ y ≤ 0

1 y < −b

x̂ .

This field is entirely consistent with our reasoning in part (c), below.

(b) See the figure. The figure and the discussion below assumes J0 > 0,
i.e. that the current is out of the page.

(c) The essential intuition is that magnetic fields wrap around the current
that is generating them according to the right-hand rule. (This follows
directly from Ampere’s law, which tells you that the curl of a magnetic
field points in the direction of its source current.) Since the current is
flowing out of the page (see the figure) the magnetic field wants to wrap
around it counter-clockwise. However, since the slab is infinite in the x-
direction, the field lines can’t close around the edges of the slab like they
would if the slab were finite in extent in that dimension, and end up being
parallel to the x-axis. (It’s a limiting case of a finite slab:
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Thought of another way, the infinite slab is an approximation to a finite
slab close to the surface of the slab, close to its center.)

Anyway, this intuition tells you further that the field lines must point
to the left (in the negative-x direction) above the center-line of the slab
(i.e. the x-y plane), and to the right (the positive-x direction) below it. By
the translational symmetry in the x- and z-directions, the magnitude of
the field must be constant in those directions, so the only possible variation
allowed must be in the y-direction. Additionally, by the reflection symme-
try through the x-y plane, it therefore must be that Bx(−y) = −Bx(y).
Moreover, because the field changes direction across the x-y plane, the
field must be zero right on the plane (y = 0). Further, Ampere’s law tells
you that the more current is enclosed by the Amperian loop, the stronger
the field, so the field strength must increase as you get further from the
x-y plane. Once you get outside the slab, the field can’t keep increasing
because you aren’t enclosing any more current, so it must remain constant
outside of the slab all the way to y = ±∞. (This isn’t of course realistic,
but that is because slabs that are infinite in extent aren’t either. It’s the
same situation with an infinite sheet of charge: Gauss’ law tells you that
the electric field above such a sheet is also constant out to infinity away
from the sheet. This is the magnetic version of the same problem.)

All of that intuition and reasoning yields the figure shown.

TLDR: If you really want to get fancy, we can even mostly work out the
value of the field strength from dimensional analysis. Ampere’s law tells
you that the magnitude of ~B has dimensions of µ0 × J0 × [length], and
the only parameter in the problem with dimensions of length is the (half-
)thickness of the slab, b. Thus, since outside the slab the field strength
is constant, we must have Bx ∝ µ0J0b. Inside, since it must go to zero
for y = 0, and must join smoothly to the field outside, we might guess
something like Bx ∝ µ0J0b × (y/b). This guess would be correct were
the current density inside the slab spatially constant, so that the current
enclosed by the Amperian loop increases linearly in y. However, since the
magnitude of ~J is not constant but rather increases linearly with y, the
enclosed current increases quadratically and the y-dependence of the field
is (y/b)2 rather than simply (y/b). The work in part (a) is just to nail
down details such as any possible overall numeric factors.
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A spatially uniform magnetic field ~B = Bz(t)ẑ is confined to a circular region
of radius aB , outside of which the field is 0. Looping around this magnetic field
(and concentric with it) is a metal hoop of radius aH > aB with a resistance R.
Suppose that at t = 0 the strength of the magnetic field begins to change:

Bz(t) = B0 −K · t2,

where K is a constant.

(a) Find the current (magnitude and direction) in the hoop for t > 0.

(b) Note the magnetic field eventually reverses direction. Does the current do
the same? Explain physically.
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A spatially uniform magnetic field ~B = Bz(t)ẑ is confined to a circular region
of radius aB , outside of which the field is 0. Looping around this magnetic field
(and concentric with it) is a metal hoop of radius aH > aB with a resistance R.
Suppose that at t = 0 the strength of the magnetic field begins to change:

Bz(t) = B0 −K · t2,

where K is a constant.

(a) Find the current (magnitude and direction) in the hoop for t > 0.

(b) Note the magnetic field eventually reverses direction. Does the current do
the same? Explain physically.

Solution: .

This problem is all about Faraday’s ’s law, E = −dΦB/dt, which follows from

the Maxwell equation ∇× ~E = −∂ ~B/∂t integrated over a surface and applying

Stokes’ theorem. Here, the flux ΦB =
∫
~B · d~a is calculated by integrating ~B

over the surface and E =
∮
~E · d~l is integrated around the boundary of that

surface in a direction related by the right-hand rule to the chosen normal to
said surface.

(a) The idea is to recognize that because the flux of magnetic field through the
hoop is changing, there is an induced electric field (yielding the “emf” E)
that induces a current I in the hoop, which we find by setting E = I · R.
The “surface” over which we are integrating is the circle of radius aH
enclosed by the hoop, with normal +ẑ. (This is because that will tell us
the electric field, hence E , induced at the boundary of that surface, namely,
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inside the hoop.) Intuitively, assuming that K > 0, the magnetic flux ΦB
up through the hoop is decreasing – worded more carefully, becoming more
negative – with time. According to Lenz’ law (aka the − sign in Faraday’s
law), the induced current resists the change in flux, so a current will be
induced counterclockwise around the hoop (as shown) in order to create
a positive magnetic flux up through the hoop to counter the decrease in
flux from the external field.

Here’s the math:

E = − d

dt

∫
hoop

~B · d~a

= − d

dt
(Bz(t) · πa2B) (note aB , not aH , because ~B 6= 0 only for r < aB)

= +2πa2BKt

= I ·R

I =
2πa2BKt

R
(counterclockwise around z-axis) .

The flux integral is trivial because the magnetic field is spatially constant.
Note the current I > 0, which tells us that it is counterclockwise around
the hoop. (That’s because with ẑ as the chosen normal to the surface over

which we are integrating, we were integrating E =
∮
~E ·d~l counterclockwise

around the hoop, and our calculation shows that with these choices E ,
hence I, is positive, consistent with Lenz’ law. Lenz’ law, of course, is
just a way of putting words and intuition into a − sign that is built into
Maxwell’s equations.)

(b) See the end of the first paragraph of the answer to (a). Note that argu-
ment holds regardless of the sign of B0 or of Bz(t); what matters is that
∂Bz(t)/∂t < 0, so that dΦB/dt < 0. That is the change the induced cur-
rent is resisting, and the change doesn’t change. Therefore, the induced
current I does not change direction.
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Adiabatic diatomic gas Consider an insulated cylinder which is full of a
diatomic gas, which is governed by the following equations of state:

U =
5

2
NkBT +

~ω

e
~ω
kBT − 1

(5.1)

pV = NkBT (5.2)

The initial temperature is T0 and the volume is V0. The gas is slowly compressed
until it is twice its original temperature. Solve for the final volume. You may
express your final answer as an equation involving an integral.

Note that the second term in the internal energy above is frequently ignored
under the assumption that kBT � ~ω. In this problem you should not make
that approximation.
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Adiabatic diatomic gas Consider an insulated cylinder which is full of a
diatomic gas, which is governed by the following equations of state:

U =
5

2
NkBT +

~ω

e
~ω
kBT − 1

(5.3)

pV = NkBT (5.4)

The initial temperature is T0 and the volume is V0. The gas is slowly compressed
until it is twice its original temperature. Solve for the final volume. You may
express your final answer as an equation involving an integral.

Note that the second term in the internal energy above is frequently ignored
under the assumption that kBT � ~ω. In this problem you should not make
that approximation.

Solution: .
Firstly, I will mention there was an error in the problem. The second term
in U should have a factor of N . This meant that the internal energy was not
extensive, which undermines sense-making about this problem.

We begin with the thermodynamic identity:

dU = TdS − pdV (5.5)

and note that because we are adiabatically compressing, the entropy remains
constant, so we can say that

dU = −pdV (5.6)

= −NkBT
V

dV (5.7)

Now we can use the other equation of state, and take a derivative to find a
relation between dU and dT :

dU =
5

2
NkBdT +

~ω(
e

~ω
kBT − 1

)2 e ~ω
kBT

~ω
kBT

1

T
dT (5.8)

Now we can set the two expressions for dU equal:

−NkBT
V

dV =

5

2
NkB +

~ω(
e

~ω
kBT − 1

)2 e ~ω
kBT

~ω
kBT

1

T

 dT (5.9)

Now we put all the V on one side and all the T on the other, and we can
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integrate from the initial state to the final state.

−NkB
V

dV =

5

2
NkB +

~ω(
e

~ω
kBT − 1

)2 e ~ω
kBT

~ω
kBT 2

 1

T
dT (5.10)

−
∫ Vf

V0

NkB
V

dV =

∫ 2T0

T0

5

2
NkB +

~ω(
e

~ω
kBT − 1

)2 e ~ω
kBT

~ω
kBT 2

 1

T
dT (5.11)

−NkB ln
Vf
V0

=
5

2
NkB ln 2 +

∫ 2T0

T0

~ω(
e

~ω
kBT − 1

)2 e ~ω
kBT

~ω
kBT 3

dT (5.12)

At this point, we essentially have an answer, but we’re supposed to solve for Vf ,
and it also seems like it would be nice to simplify the integral by taking out the
dimensions.

(5.13)

u =
~ω
kT

du = − ~ω
kT 2

dT (5.14)

−NkB ln
Vf
V0

=
5

2
NkB ln 2 +

∫ ~ω
2kBT0

~ω
kBT0

eu

(eu − 1)
2 kBu(−du) (5.15)

=
5

2
NkB ln 2 + kB

∫ ~ω
kBT0

1
2

~ω
kBT0

eu

(eu − 1)
2udu (5.16)

Sadly, we can’t take the physics out of the limits of the integral, which is why
you weren’t asked to do so. But we can still solve for Vf in terms of this integral.

Vf = V02−
5
2 e

− 1
N

∫ β0
1
2
β0

eu

(eu−1)2
udu

(5.17)
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Unknown system Consider a system with the following internal energy:

U =
E12e−βE1

1 + 2e−βE1
(6.1)

where the energy E1 > 0 and as usual β = 1
kBT

. You are told by a reliable
source that the ground state of the system is non-degenerate.

(a) Solve for the heat capacity of this system at constant volume.

(b) How many microstates does the system have, and what are their energies?

(c) Solve for the limiting value of the entropy at high and low temperatures.
You need to retain any temperature dependence in your answer.
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Unknown system Consider a system with the following internal energy:

U =
E12e−βE1

1 + 2e−βE1
(6.2)

where the energy E1 > 0 and as usual β = 1
kBT

. You are told by a reliable
source that the ground state of the system is non-degenerate.

(a) Solve for the heat capacity of this system at constant volume.

Solution: .
This part does not require that you solve for the entropy, although most
students ended up solving part (b) first and then finding the entropy and
computing the heat capacity from that. That approach is completely
correct, but is a bit more work than what I show here..

CV = T

(
∂S

∂T

)
V

(6.3)

=

(
∂U

∂T

)
V

(6.4)

This bit comes from the thermodynamic identity dU = TdS − pdV , and
recognizing that since V is held constand during the derivative dU = TdS.
Solving for the entropy (once you realize that it is a three-state system,
see below) isn’t too bad, but is a bit more algebraically messy.

CV = 2E1

(
−E1

e−βE1

1 + 2e−βE1
+ 2E1

e−βE1

(1 + 2e−βE1)
2 e

−βE1

)
∂β

∂T
(6.5)

=

(
e−βE1

1 + 2e−βE1
− 2

e−2βE1

(1 + 2e−βE1)
2

)
2E2

1

kBT 2
(6.6)

=

(
e−βE1 + 2e−2βE1

(1 + 2e−βE1)
2 − 2

e−2βE1

(1 + 2e−βE1)
2

)
2E2

1

kBT 2
(6.7)

=
2E2

1

kBT 2

e−βE1

(1 + 2e−βE1)
2 (6.8)

Always check here that the dimensions are energy per temperature, which
they are because one of the E1s cancels out the kBT on the bottom.

(b) How many microstates does the system have, and what are their energies?

Solution: .
There are a couple of ways to solve this problem. Perhaps the most natural
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is to start with recalling that the internal energy is a Boltzmann-weighted
average of the energies of all the microstates:

U =

∑all microstates
i Eie

−βEi∑all microstates
i e−βEi

(6.9)

=
E12e−βE1

1 + 2e−βE1
(6.10)

=
0 · e0 + E1e

−βE1 + E1e
−βE1

e0 + e−βE1 + e−βE1
(6.11)

Setting these two expressions for U equal, we can start piecing together
the energies. The ground state energy looks to be zero, since the first
exponential in the denominator is e0, which is consistent with the fact
that we don’t have two terms in the numerator (because 0e0 = 0). So the
ground state energy is zero. Next we consider the fact that one expression
has prefactors of 2 on top and bottom, versus the other that does not have
such factors. You can either recognize this as the multiplicity (particularly
if you use the “sum over energies” expression rather than the “sum over
microstates”), or you can just note that you can obtain a factor of two if
there are two identical exponentials due to two states with energy E1.

In any case, you can confirm that if we have one microstate with energy 0
and two microstates that have energy E1 you will reproduce the internal
energy given. It is well worth confirming that this is the case:

U =

∑
iEie

−βEi∑
i e

−βEi
(6.12)

=
0 + E1e

−βE1 + E1e
−βE1

1 + +e−βE1 + e−βE1
(6.13)

=
2E1e

−βE1

1 + +2e−βE1
(6.14)

which is the same as what were given.

(c) Solve for the limiting value of the entropy at high and low temperatures.
You need to retain any temperature dependence in your answer.

Solution: .
This requires our answer from part a. The entropy is given by

S = −kB
all microstates∑

i

Pi lnPi (6.15)

Our life is made easier by the fact that we were only asked for the high-
and low-temperature values, which means that rather than solving for S

for arbitrary T (using P1,2 = e−βE1

1+2e−βE1
and P0 = 1

1+2e−βE1
, which is totally
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doable), we can find the probabilities in the high- and low-temperature
limits, and use those to find the entropy in those limits.

In the limit of low temperature, the probability approaches 100% that
the system is in the ground state, so P0 = 1 and P1,2 = 0. This means
that the entropy is zero, since each P lnP is zero (since ln 1 = 0 and
while ln 0 = −∞ it approaches infinity more slowly than the factor of P
approaches zero).

S(T = 0) = 0 (6.16)

This is a standardly common result, and even gets the name of the Third
Law of Thermodynamics (when expressed correctly).

As the temperature approaches infinity, all three states will be equally
likely. This means that P0 = P1 = P2 = 1

3 , so

S(T =∞) = −kB
(

1

3
ln

1

3
+

1

3
ln

1

3
+

1

3
ln

1

3

)
(6.17)

= −kB ln
1

3
(6.18)

= kB ln 3 (6.19)

This is also just the Boltzmann expression for entropy when there are
three microstates with essentially the same energy.

Since students can’t necessarily be expected to see the easy solution, I’ll
talk through the hard way. We write down:

S = −kB (P0 lnP0 + P1 lnP1 + P2 lnP2) (6.20)

= −kB (P0 lnP0 + 2P1 lnP1) (6.21)

= −kB
(

1

1 + 2e−βE1
ln

1

1 + 2e−βE1
+ 2

e−βE1

1 + 2e−βE1
ln

e−βE1

1 + 2e−βE1

)
(6.22)

=
kB

1 + 2e−βE1

(
ln(1 + 2e−βE1) + 2e−βE1 ln(1 + 2e−βE1) + 2βE1e

−βE1
)

(6.23)

= kB ln(1 + 2e−βE1) +
2E1

T

e−βE1

1 + 2e−βE1
(6.24)

Once you get here, you just need to take the high- and low-temperature
limits.

There is yet a third (easier than hard, but harder than the easiest) way
to solve this. That is to solve for the entropy using the Helmholtz free
energy and the internal energy. This involves remembering that

F = U − TS (6.25)

S =
U − F
T

(6.26)
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and also remembering that

F = −kBT lnZ (6.27)

so taken together, you find

S =

E12e
−βE1

1+2e−βE1
− (−kBT ln(1 + 2e−βE1))

T
(6.28)

=
2E1

T

e−βE1

1 + 2e−βE1
+ kB ln(1 + 2e−βE1) (6.29)

which of course is the same answer we got when computing the entropy
directly from probabilities.
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A climber (mass m, (label C in the figure)) starts climbing from a point high up
on a vertical wall (labeled A in the figure) and has placed his last (highest) an-
chor (denoted B in the figure) a distance h above point A. His (elastic) climbing
rope (unstretched length L) is firmly secured (tied) to an indestructible anchor
at point A a distance L below the climber. The climber has climbed a distance
d above his last anchor point (a small fixed ring), when he slips and falls a
distance 2d + ∆x, where ∆x is the maximum stretching length of the elastic
rope.

To answer the questions below a number of idealizations are made: You may
assume that the elastic climbing rope can be treated as an ideal spring obeying
Hooke’s law with a spring constant k(L) = R/L. R is the rope modulus given
by R = Y A with Y being Young’s modulus and A the cross sectional area of
the rope. You may treat the climber as a point mass and also assume that the
rope is massless and moves without friction through the last anchor point B.
You may further ignore all motion after the rope fully arrests the fall, i.e. the
climber velocity reaches v = 0 for the first time.

(a) Calculate the maximum force acting on the climber during the fall and
show that it does not depends on the total length of the fall (2d + ∆x)
but rather on the ratio f = d/L.

Solution: .
Hooke’s law: Fel = −k∆x = −R/L∆x.
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Maximum force will be for maximum ∆x = ∆xmax. We write ∆xmax
simply as x below.

Conservation of energy determines ∆xmax = x:

mg(2d+ x) =
1

2

R

L
x2

and

x =
mg

R
L

(
1 +

√
1 + 4

R

mg

d

L

)

=
L

κ

(
1 +

√
1 + 4κ

d

L

)
,

where we introduced the notation κ = R/mg.

The force on the climber is the sum of gravity and tension:

F = mg − R

L
x

= mg
√

1 + 4κf , f = d/L .

(b) Calculate the time from the initial slip of the climber until the rope fully
arrests the fall, i.e. the climber velocity reaches v = 0 for the first time.

Solution: .
The time is the sum of free fall time tf and forced pendulum time tp:
t = tf + tp. Free fall of distance 2d:

2d =
1

2
gt2f ⇒ tf = 2

√
d/g .

We obtain a differential equation for the forced pendulum from Newton’s
3rd law and the force acting on the climber:

F = mẍ

mg − R

L
x = mẍ

⇒ ẍ+ ω2x = g withω2 =
R

mL
=
κg

L
.

The general solution is the sum of the solution of the homogenoues ODE
and a special solution, here simply x0 = const = g/ω2 = L/κ:

x(t) = a sinωt+ b cosωt+ L/κ

v(t) = aω cosωt− bω sinωt .
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With initial conditions, x(tp = 0) = 0 and v(tp = 0) = gtf = 2
√
dg, we

obtain

x(t) =
L

κ

(
1− cosωt+

√
4κf sinωt

)
v(t) =

√
L

gκ

(
sinωt+

√
4κf cosωt

)
.

v(t) becomes 0 for the first time when

tanωtp = −
√

4κf

⇒ tp =

√
L

gκ

(
π − arctan(

√
4κf)

)
.
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A uniform disk, having mass M and radius R, rolls without slipping on a hor-
izontal surface. A frictionless pendulum consisting of a point mass m and a
massless rod of length L, (L < R), swings from the center of the disk. The
motion takes place in a vertical plane under the influence of a uniform gravita-
tional field ~g (see figure).

(a) Find Lagrange’s equations of motion for this system.

Solution: .

L = T − U .

T =
1

2
Mẋ2 +

1

2
Iω2 +

1

2
m

[(
d

dt
(x+ L sin θ)

)2

+

(
d

dt
(L cos θ)

)2
]
.

With ω = ẋ/R (rolling) and I = 1
2MR2:

T =
1

2
Mẋ2 +

1

4
Mẋ2 +

1

2
m

[(
ẋ+ Lθ̇ cos θ

)2
+
(
Lθ̇ sin θ)

)2]
.

U = −mgL cos θ ,

and

L =
3

4
Mẋ2 +

m

2

(
ẋ2 + 2Lẋθ̇ cos θ + L2θ̇2

)
+mgL cos θ

d

dt

∂L

∂ẋ
=
∂L

∂x
d

dt

(
3

2
Mẋ+mẋ+mLθ̇ cos θ

)
= 0

3

2
Mẍ+mẍ+mLθ̈ cos θ −mLθ̇2 sin θ = 0
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d

dt

∂L

∂θ̇
=
∂L

∂θ
d

dt

(
mLẋ cos θ +mL2θ̇

)
= −mLẋθ̇ sin θ −mgL sin θ

mLẍ cos θ −mLẋθ̇ sin θ +mL2θ̈ = −mLẋθ̇ sin θ −mgL sin θ

⇒ ẍ cos θ + Lθ̈ + g sin θ = 0

(b) Calculate the frequency of the pendulum for small oscillations of the pen-
dulum: θ � 1.

Solution: .
Small angle approximation: θ � 1 ⇒ cos θ ≈ 1 and sin θ ≈ θ, also drop
higher order terms in θ and θ̇:

3

2
Mẍ+mẍ+mLθ̈ = 0

ẍ+ Lθ̈ + gθ = 0

From first eqn:

ẍ =
−mLθ̈

3
2M +m

insert into second eqn:(
−mL

3
2M +m

+ L

)
θ̈ + gθ = 0

θ̈ +

((
2

3

m

M
+ 1

)
g

L

)
θ = 0

and

ω0 =

√(
2

3

m

M
+ 1

)
g

L


