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OSU Physics Department
Comprehensive Examination #134

Solutions

Monday, April 1 and Tuesday, April 2, 2019

Spring 2019 Comprehensive Examination

Classical Mechanics 9 AM-12 PM Monday, April 1
Quantum Mechanics 1 PM-4 PM Monday, April 1

Electricity and Magnetism 9 AM-12 PM Tuesday, April 2
Statistical Mechanics 1 PM-4 PM Tuesday, April 2

General Instructions

This Spring 2019 Comprehensive Examination consists of four separate parts
of two problems each, and you have three hours to work on each part. Each
problem caries equal weight (20 points). Work carefully, indicate your reasoning,
and display your work clearly. Even if you do not complete a problem, it might
be possible to obtain partial credit—especially if your understanding is manifest.
Use no scratch paper; do all work on the provided pages, work each problem in its
own labeled pages, and be certain that your chosen student letter (but not your
name) is on the header of each page of your exam, including any unused pages.
If you need additional paper for your work, use the blank pages provided. Each
page of work should include the problem number, a page number, your chosen
student letter, and the total number of pages actually used. Be sure to make
note of your student letter for use in the remaining parts of the examination.

If something is omitted from the statement of the problem or you feel there
are ambiguities, please get up and ask your question quietly and privately, so
as not to disturb the others. Put all materials, books, and papers on the floor,
except the exam and the collection of formulas distributed with the exam. Cal-
culators are not allowed except when a numerical answer is required—calculators
will then be provided by the person proctoring the exam. Please staple and re-
turn all pages of your exam—including unused pages—at the end of the exam.

Monday morning Problem 0



Problem 1 2

Spinning ping pong ball Consider a ping pong ball that at t = 0 is spinning
on a surface with coefficient of kinetic friction µ. The initial angular velocity
is ω0 and the initial velocity is zero. After some period of time the ball stops
slipping on the table and starts rolling without slipping. After this, assume
there is no loss of energy.

(a) What fraction of the initial rotational kinetic energy is turned into trans-
lational kinetic energy?

(b) What fraction of the initial rotational kinetic energy is lost?

Reminder: the magnitude of the force due to kinetic (sliding) friction is

Ff = µN (1.1)

where N is the magnitude of the normal force.

The moment of inertia of a hollow sphere (such as our ping pong ball) is 2
3MR2.
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Spinning ping pong ball Consider a ping pong ball that at t = 0 is spinning
on a surface with coefficient of kinetic friction µ. The initial angular velocity
is ω0 and the initial velocity is zero. After some period of time the ball stops
slipping on the table and starts rolling without slipping. After this, assume
there is no loss of energy.

(a) What fraction of the initial rotational kinetic energy is turned into trans-
lational kinetic energy?

Solution: .
Since our ping pong ball is sliding, it feels a constant force (until it stops
sliding), which is given by µN . Conveniently, the vertical forces are simple
(gravity and the normal force) and the vertical acceleration is zero, so

Ff = µMg (1.2)

where g is the acceleration due to gravity.

The torque on the ping pong ball is

τ = FfR (1.3)

= µMgR (1.4)

= −Iω̇ (1.5)

where ω is the angular velocity of the ball. We can easily integrate this to
find that

ω(t) = ω0 −
µMgR

I
t (1.6)

= ω0 −
µMgR
2
3MR2

t (1.7)

= ω0 −
3

2

µg

R
t (1.8)

Since we know the force on the ball (nothing but friction), we can also
write down and solve the translational equation of motion:

Ff = Mv̇ (1.9)

v =
Ff
M
t (1.10)

= µgt (1.11)

where I enforced that the speed start at zero. Note here that the frictional
force is accelerating our ball, eating up its rotational energy and turning
it into translational kinetic energy, but with some loss.

Now we need to find the criterion for the time tf when it stops slipping.
This is the “rolling without slipping” criterion, when the rotational veloc-
ity of the surface in its center-of-mass frame (Rω) is equal in magnitude
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to its translational velocity v.

vf = Rωf (1.12)

µgtf = R

(
ω0 −

3

2

µg

R
tf

)
(1.13)

tf =
2

5

Rω0

µg
(1.14)

The initial rotational kinetic energy is

Kroti =
1

2
Iω2

0 (1.15)

=
1

2

2

3
mR2ω2

0 (1.16)

=
1

3
mR2ω2

0 (1.17)

The final translational kinetic energy is given by

Ktransf =
1

2
mv2f (1.18)

=
1

2
m

(
µg

2

5

Rω0

µg

)2

(1.19)

=
2

25
mR2ω2

0 (1.20)

=
6

25
Kroti (1.21)

So we convert 6
25 of the initial kinetic energy into translational kinetic

energy.

(b) What fraction of the initial rotational kinetic energy is lost?

Solution: .

Grading note It turned out that this question was confusing to a num-
ber of students. who interpreted it to mean what was the fractional decrease
in the rotational kinetic energy. Since the question was confusing in this
way (and didn’t require any serious extra effort with either interpretation),
I did not assign any points to this question specifically.

The easy way to find this is by finding the final rotational kinetic energy
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and doing a subtraction.

Krotf =
1

2
Iω2

f (1.22)

=
ω2
f

ω2
0

Kroti (1.23)

=

(
ω0 − 3

2
µg
R tf

)2
ω2
0

Kroti (1.24)

=

(
ω0 − 3

2
µg
R

2
5
Rω0

µg

)2
ω2
0

Kroti (1.25)

=
9

25
Kroti (1.26)

Putting these together we can find that the energy lost is

Elost = Kroti −Krotf −Ktransf (1.27)

=

(
1− 9

25
− 6

25

)
Kroti (1.28)

=
2

5
Kroti (1.29)

So we lose 2
5 of the initial energy due to friction.

Reminder: the magnitude of the force due to kinetic (sliding) friction is

Ff = µN (1.30)

where N is the magnitude of the normal force.

The moment of inertia of a hollow sphere (such as our ping pong ball) is 2
3MR2.



Problem 2 6

Spring pendulum Consider a mass m that is hanging from a spring with
spring constant k and an equilibrium length L (that is to say, if there is no
external force on the spring its length will be L).

(a) How many normal modes do you expect this system to have?

(b) Identify and describe the normal modes of this system.

(c) Solve for the frequencies of all of the normal modes.
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Spring pendulum Consider a mass m that is hanging from a spring with
spring constant k and an equilibrium length L (that is to say, if there is no
external force on the spring its length will be L).

(a) How many normal modes do you expect this system to have?

Solution: .
There are three normal modes, because the mass can move in three pos-
sible directions.

(b) Identify and describe the normal modes of this system.

Solution: .
This can be solved by symmetry alone.

There must be one up-and-down mode, since if the displacement is vertical
the force will always be vertical also.

The other two normal modes would involve displacements in the two or-
thogonal horizontal directions. These would be degenerate, so we could
take a linear combination of the two modes to find uniform circular motion
that is clockwise or counterclockwise as the two modes.

(c) Solve for the frequencies of all of the normal modes.

Solution: .
The force on the object is given by

~F = m~g − k(|~r| − L)r̂ (2.1)

where I measure ~r from the mounting point of the spring and ~g is the
acceleration due to gravity (which I’ll put in the +ẑ direction). If we
consider the vertical mode, we can see that this equation reduces down to

Fz = mg − k(z − L) (2.2)

= mg + kL− kz (2.3)

and we can pretty easily see that the frequency is the very familiar
√
k/m.

We’ll start by finding the equilibrium z. Then we will rewrite things in
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terms of displacement from equilibrium.

0 = mg − k(z0 − L) (2.4)

= mg + kL− kz0 (2.5)

z0 = L+
mg

k
(2.6)

Actually, doing this computation in Cartesian coordinates is pretty incon-
venient, because of having to deal with this |~r| − L distance. It’s way
easier if we use spherical coordinates:

V = −mgr cos θ +
1

2
k(r − L)2 (2.7)

The kinetic energy in this case is of course slightly more complicated.
There are several ways to solve for it in spherical coordinates. Some
involve tedious use of trig identities to simplify the result. The easiest way
is to begin by writing the displacement vector in spherical coordinates and
taking a derivative:

~r = rr̂ (2.8)

~̇r = ṙr̂ + r ˙̂r (2.9)

The second term shows up because the direction r̂ is itself time dependent.
Then we need to know what ˙̂r is, which is most easily done geometrically.
If you change theta, r̂ moves in the θ̂ direction, and if you change φ then
r̂ moves in the φ̂ direction, but the distance it moves needs to be scaled
down by sin θ because as sin θ → 0 the value of φ becomes less important.

˙̂r =
∂r̂

∂θ
θ̇ +

∂r̂

∂φ
φ̇ (2.10)

= θ̇θ̂ + sin θφ̇φ̂ (2.11)

Taken together, we can see that the speed is given by∣∣∣~̇r∣∣∣2 = ṙ2 + r2
(
θ̇2 + sin2 θφ̇2

)
(2.12)

Note that you could do any subportion of this in Cartesian coordinates if
you wanted to do so.

We can now write down our Lagrangian in sphrical coordinates:

L = T − V (2.13)

=
1

2
m
(
ṙ2 + r2

(
θ̇2 + sin2 θφ̇2

))
+mgr cos θ − 1

2
k(r − L)2 (2.14)

and we can either find our equations of motion first and then do a power
series expansion second, or the opposite.

∂L

∂r
=

d

dt

∂L

ṙ

∂L

∂θ
=

d

dt

∂L

θ̇

∂L

∂φ
=

d

dt

∂L

φ̇
(2.15)
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Let’s start with the radial version

mr
(
θ̇2 + sin2 θφ̇2

)
+mg cos θ − k(r − L) = mr̈ (2.16)

−m sin θ cos θφ̇2 −mgr sin θ = mr2θ̈ +mrṙθ̇ (2.17)

0 = mr2 sin2 θφ̈+mrṙ sin2 θ +mr2 sin θ cos θθ̇φ̇ (2.18)

At this point, we can see that there is a conserved angular momentum
and all sorts of other things, but it looks pretty nasty. That’s because I
decided to expand about equilibrium after finding the equations of motion.
So we can simplify things by expanding under the assumption that θ ≈ 0
and r ≈ L+ mg

k . Then keeping only the terms, the first two equations of
motion turn into

−k
(
r − L− mg

k

)
= mr̈ (2.19)

−mg
(
L+

mg

k

)
θ = m

(
L+

mg

k

)2
θ̈ (2.20)

The third equation has no linear term, but that’s all right because we can
construct our three normal modes such that φ̇ = 0 for each of them.

Based on Eq. 2.19, we can see that the normal mode in which r varies has
frequency

ωz =
√
k/m, (2.21)

since Eq. 2.19 is just the equation for an ordinary spring with spring
constant k and mass m.

For the sideways modes, we need to consider Eq. 2.20, which simplifies to

θ̈ = − g

L+ mg
k

θ (2.22)

This has a solution with a frequency

ωxy =

√
g

L+ mg
k

(2.23)

Thus we have three normal modes, one moving up and down with fre-
quency ωz above, and two swinging sideways with the same frequency ωxy.

We can see that the vertical mode just has the native frequency of the
spring. The horizontal modes have a frequency which is identical to the
ordinary pendulum frequency for a pendulum with length equal to that of
the spring in its equilibrium stretched by gravity.

We can also check a couple of intersting limiting cases. One is the case
where the spring constant k is very large, such that L� mg

k . In this case,

we gain the usual pendulum frequency
√

g
L . The other limiting case is

where the equilibrium length is very short (or equivalently, the spring is
very soft) so L � mg

k . In this limit, we find that the frequency of the
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horizontal modes becomes equal to that of the vertical modes, and is just

the usual spring frequency
√

k
m . These cases can give us confidence that

our frequency is correct.



Consider a potential energy step as shown below with a beam of particles incident from 
the left. 

 

 a) Calculate the probability of reflection for the case where the energy of the 
incident particles is less than V0. 

 b) Calculate the probability of reflection for the case where the energy of the 
incident particles is greater than V0. 

 c) Sketch your results as a function of the incident energy and comment on the 
energy dependence. 

	
	 	

0
x

VHxL
V0

Problem 3 11
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Solution	
	
a) When the energy of the incident particles is less than the height of the potential energy 
step, the wave function on the right side is a decaying exponential: 

 ϕE x( ) = Aeikx + Be− ikx ,     x < 0
Ce−qx ,                 x > 0

⎧
⎨
⎪

⎩⎪
 

where 

 

 

k = 2mE
!2

q =
2m V0 − E( )
!2

 

The boundary conditions at the step are 

 
ϕ 0( ) :A + B = C

dϕ x( )
dx x=0

: ikA − ikB = qC
 

Substitute the first equation into the second equation and solve for the ratio of the 
reflected amplitude to the incident amplitude 

 
ikA − ikB = q A + B( )
ikA − qA = ikB + qB

B
A
= ik + q
ik − q

 

The absolute square of this gives the reflection coefficient 

 R =
B 2

A 2 =
ik + q
ik − q

= k2 + q2

k2 + q2
= 1  

So 100% of the particles are reflected and there is no probability of transmission.  There 
is some penetration of the wave function into the step, but the wave function decays to 
zero and never reaches infinity (where your detector is). 
b) When the energy of the incident particles is greater than the height of the potential 
energy step, the wave function on the right side is a complex exponential: 

 ϕE x( ) = Aeik1x + Be− ik1x ,     x < 0
Ceik2x ,                 x > 0

⎧
⎨
⎪

⎩⎪
 

where 
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.



 

 

k1 =
2mE
!2

k2 =
2m E −V0( )
!2

 

The boundary conditions at the step are 

 
ϕ 0( ) :A + B = C

dϕ x( )
dx x=0

: ik1A − ik1B = ik2C
 

Substitute the first equation into the second equation and solve for the ratio of the 
reflected amplitude to the incident amplitude 

 
ik1A − ik1B = ik2 A + B( )
ik1A − ik2A = ik1B + ik2B
B
A
= k1 − k2
k1 + k2

 

The absolute square of this gives the reflection coefficient 

 R =
B 2

A 2 =
k1 − k2( )2
k1 + k2( )2

=
E − E −V0
E + E −V0

⎛

⎝⎜
⎞

⎠⎟

2

 

So less than 100% of the particles are reflected and there is some probability of 
transmission 
c)  Plot: 

  
The reflection probability is unity until the energy exceeds the step height, after which 
the reflection decreases monotonically. 
	
	 	

0.5 1.0 1.5 2.0
E/V0

0.2

0.4

0.6

0.8

1.0

R

0.5 1.0 1.5 2.0
E/V0

0.2

0.4

0.6

0.8

1.0

T
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Consider an infinite square well potential, as shown below, with walls at x = 0  and 
x = L ; that is, V (x) = 0 for 0 < x < L;  V (x) = ∞  otherwise. 

 a) Now impose a small perturbation on this potential of the form 
′H = L  V0  δ x − L 2( ) , where δ x( )  is the Dirac delta function.  Calculate the 

first-order correction to the energy of the nth state of the infinite well. 

 b) Give some physical explanation of why your answer for (a) is different for 
even and odd values of n. 

Now consider the case where we impose a different small perturbation on the infinite 
square well potential, as shown below, with ε a small number. 

 c) Calculate the first-order perturbation correction to the energy of the ground 
state of the infinite well. 

 d) In the limit where ε goes to zero, compare your answer to (c) with the answer 
to (a).  Discuss.  

	 	

0 L
2

L
L
2 -

eL
2

L
2 +

eL
2

x

V0
e

VHxL ¶

0 L/2 L
x

VHxL ¶

Figure 1: Infinite square well 

Figure 2: Perturbed infinite square 
well (part(c)). 
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Solution	
	
a)  The first-order energy correction to the nth state is:  

 En
(1) = n 0( ) ′H n 0( )  

With ′H = LV0δ x − L 2( )  andϕn
(0) = 2 L sin nπx L( ) , we find  

 En
(1) = 2

L
sin2 nπx

L
⎛
⎝⎜

⎞
⎠⎟ LV0δ x − L

2
⎛
⎝⎜

⎞
⎠⎟ dx0

L

∫ = 2V0 sin
2 nπ
2

⎛
⎝⎜

⎞
⎠⎟  

For odd values of n, the correction is 2V0, while for even values of n, it is zero: 

 En
(1) =

2V0    ; n odd
0      ; n even

⎧
⎨
⎪

⎩⎪
 

b)  The wave function for a state with an even value of n is zero at the location of the 
delta function, so it does not "sample" the perturbation, and the energy is therefore 
unaffected.  Not so for states with odd values of n, where the energy levels are indeed 
shifted.  
c)  For this square bump the first-order perturbation is 

 

En
(1) = n 0( ) ˆ ′H n 0( ) = ϕn

*(x)V0
ε
ϕn (x)dxL /2−εL /2

L /2+εL /2

∫ = ϕ1
*(x)V0

ε
ϕ1(x)

⎡
⎣⎢

⎤
⎦⎥
dx

L /2−εL /2

L /2+εL /2

∫

= V0
ε

2
L
sin2 π x

L
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dx

L /2−εL /2

L /2+εL /2

∫ = V0
ε
2
L

1
2
1− cos 2π x

L
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
dx

L /2−εL /2

L /2+εL /2

∫

= V0
εL

x − L
2π

⎛
⎝⎜

⎞
⎠⎟ sin

2π x
L

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥L /2−εL /2

L /2+εL /2

= V0
εL

L
2
+ ε L

2
− L
2π

⎛
⎝⎜

⎞
⎠⎟ sin

2π
L

L
2
+ ε L

2
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
− L
2
− ε L

2
⎛
⎝⎜

⎞
⎠⎟ +

L
2π

⎛
⎝⎜

⎞
⎠⎟ sin

2π
L

L
2
− ε L

2
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= V0
εL

εL − L
2π

⎛
⎝⎜

⎞
⎠⎟ sin π + επ( ) + L

2π
⎛
⎝⎜

⎞
⎠⎟ sin π − επ( )⎡

⎣⎢
⎤
⎦⎥

= V0
εL

εL + L
2π

⎛
⎝⎜

⎞
⎠⎟ sin επ( ) + L

2π
⎛
⎝⎜

⎞
⎠⎟ sin επ( )⎡

⎣⎢
⎤
⎦⎥

 

 E1
(1) =V0 1+

sin επ( )
επ

⎡
⎣⎢

⎤
⎦⎥

 

d)  In the limit of small ε, we get 

 E1
(1) ≅V0 1+

1
επ

επ⎡
⎣⎢

⎤
⎦⎥
= 2V0  

 E1
(1) ≅ 2V0  
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just as we got in part (a).  This is to be expected because in the limit of ε -> 0, the square 
bump looks like a delta function, and we arranged its parameters at the beginning so that 
the area of the bump V0 ε( )εL = LV0( )  is the same as the area of the delta function. 
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Problem 5 17

A conducting sphere is grounded and is placed in an otherwise uniform
electric field E0 = E0ẑ.

(a) Calculate the potential outside of the sphere.

(b) Calculate the charge density on the surface of the sphere.
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A conducting sphere is grounded and is placed in an otherwise uniform
electric field E0 = E0ẑ.

(a) Calculate the potential outside of the sphere.

Solution: .
Choosing the z axis to be along the symmetric axis of the sphere the
solution φ(r, θ) can be expressed using Legendre expansion as

Φ =

∞∑
l=0

(Alr
l +

Bl
rl+1

)Pl(cos θ)

Φ→ −E0rcosθ, for r � a

Φ(r = a) = 0

(5.1)

By matching the boundary conditions (and apply the uniqueness theorem)
we find the solution is

Φ = (A1r +
B1

r2
) cos θ (5.2)

where A1 = −E0, B1 = E0a
3.

(b) Calculate the charge density on the surface of the sphere.

Solution: .
In order to find the charge density, notice that the electric field inside the
sphere is zero, therefore the surface charge density is

σ = ε0Er|r=a = 3ε0E0 cos θ.
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𝐼𝐼1

𝑎𝑎

𝐶𝐶
𝑁𝑁2,ℎ

𝑅𝑅𝑁𝑁1,ℎ

𝐼𝐼2

𝐼𝐼1

𝐼𝐼2
top view

Figure 1:

Two ideal solenoids (tightly wrapped, neglecting boundary effects) are coaxi-
ally coupled. Both solenoids have a circular cross-section of radius a, and length
of h� a. The solenoids are placed at equal heights so their first and last rounds
are overlapping respectively. If looked down from the top, the currents I1 and
I2 shown in the figure run clockwise in both of the solenoids.

The first solenoid has total number of N1 rounds. This solenoid is connected
to a capacitor whose capacitance is C, therefore making a L-C circuit.

The second solenoid has total number of N2 rounds. This solenoid is con-
nected to a resistor of resistance R, therefore making an L-R circuit.

(a) If at certain moment we observe the currents running through each circuits
are I1 and I2 respectively (as shown in the figure), what is the magnetic
field in the solenoids.

(b) Show that the potential across the capacitor and resistor are proportional
to each other. This means the two coupled solenoids form a transformer.

(c) Derive the equation that governs the time dependence of Q(t) – the charge
of the capacitor. Show that Q(t) can be described as a damped harmonic
oscillator.

(d) Consider the limiting case where R→∞. If at t = 0 we have Q(t = 0) =
Q0 and I1(t = 0) = 0, solve for Q(t) at later times.
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𝐼𝐼1

𝑎𝑎

𝐶𝐶
𝑁𝑁2,ℎ

𝑅𝑅𝑁𝑁1,ℎ

𝐼𝐼2

𝐼𝐼1

𝐼𝐼2
top view

Figure 2:

Two ideal solenoids (tightly wrapped, neglecting boundary effects) are coaxi-
ally coupled. Both solenoids have a circular cross-section of radius a, and length
of h� a. The solenoids are placed at equal heights so their first and last rounds
are overlapping respectively. If looked down from the top, the currents I1 and
I2 shown in the figure run clockwise in both of the solenoids.

The first solenoid has total number of N1 rounds. This solenoid is connected
to a capacitor whose capacitance is C, therefore making a L-C circuit.

The second solenoid has total number of N2 rounds. This solenoid is con-
nected to a resistor of resistance R, therefore making an L-R circuit.

(a) If at certain moment we observe the currents running through each circuits
are I1 and I2 respectively (as shown in the figure), what is the magnetic
field in the solenoids.

Solution: .
As for ideal solenoids, the magnetic field inside is a constant. Let’s call it
B(t) along the axis of the coupled solenoids, where positive direction of
B is up. From the familiar magnetic field inside a solenoid (which can be
derived using Ampere loop), we can derive

B = −µ0I1
N1

h
− µ0I2

N2

h
, (6.1)

where positive direction of I1 and I2 are indicated in the figure, such that

I1 = −dQ
dt
, (6.2)

where Q is the charge in the upper plate of the capacitor.

(b) Show that the potential across the capacitor and resistor are proportional
to each other. This means the two coupled solenoids form a transformer.
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Solution: .
Assuming the electromotive potential across the two solenoids are ε1 and
ε2. (top minus bottom)

ε1 = N1(
d

dt
)Bπa2

ε2 = N2(− d

dt
)Bπa2

(6.3)

(c) Derive the equation that governs the time dependence of Q(t) – the charge
of the capacitor. Show that Q(t) can be described as a damped harmonic
oscillator.

Solution: .
Additionally we have the Kirchhoff’s law

Q/C + ε1 = 0

I2R+ ε2 = 0 (6.4)

Together, we can derive the equation of Q

L1
d2Q

dt2
+

L2

RC

dQ

dt
+
Q

C
= 0

L1 =
µ0N

2
1πa

2

h

L2 =
µ0N

2
2πa

2

h
(6.5)

This is identical to the equation for a damped oscillator.

(d) Consider the limiting case where R→∞. If at t = 0 we have Q(t = 0) =
Q0 and I1(t = 0) = 0, solve for Q(t) at later times.

Solution: .
In the limit of large R, this becomes a harmonic oscillator with frequency

ω =

√
1

L1C
(6.6)

using the initial conditions we can find Q = Q0 cosωt.



Consider an experiment in which an ideal monoatomic gas (𝑝𝑉 = 𝑁𝑘𝑇; 𝑈 = )
*
𝑁𝑘𝑇) is initially 

confined in a container that is connected to an empty container (see, e.g., the figure below). The 
connection is initially closed and is very small. The two containers are thermally isolated from the 
surroundings (e.g., wrapped in Styrofoam). At a certain time, the connection between the two 
containers is opened and the gas slowly leaks into the empty container. After sufficient time has 
elapsed, the system goes to equilibrium. 

 
a. Define a set of state variables that you need to describe the system. 
b. Compute the change of temperature of the system between the initial and final states. 
c. Compute the change of entropy of the system. 
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SOLUTION  
 
For part a), we define the initial state of the system with 𝑝+,+-+./, the initial pressure of the gas in the left 
container, 𝑉+,+-+./, the volume of the left container, and 𝑇+,+-+./, the temperature of the gas in the left 
container. We define the final state with 𝑝0+,./, 𝑉0+,./, and 𝑇0+,./ . Note that only two of these are 
independent, so the three variables are redundant. 
 
For part b), we consider that the gas from the left container is in free expansion in the big one. As a 
consequence, the work done by the gas is null, since it is not working against an external pressure. Since 
the system is isolated, the heat exchange is also null. We therefore have: 
 

∆𝑈 = 𝑄 −𝑊 = 0− 0 = 0 
 
In a monoatomic ideal gas, the internal energy is directly proportional to temperature  
 

𝑈 =
3
4
𝑁𝑘𝑇 

 
and therefore constant internal energy implies constant temperature. We finally have: 
 

∆𝑇 = 0 
 
For part c), we remember that S is a state variable and therefore does not depend on the process that 
links the initial state to the final state.  
To compute the change in entropy, we need to perform a quasi-static process. One way is to consider 
first an adiabatic expansion to the new volume and then an isochoric process to raise the temperature 

back to the initial value. In an adiabatic process the product pVg is constant, where g=Cp/CV is the ratio 
of the heat capacity of the gas at constant pressure over the heat capacity at constant volume. 
We can use this to compute the temperature of the gas at the end of the expansion. We have: 

 

 
This adiabatic process has no entropy change. Now we need to heat the gas back to its initial 
temperature. This is done at constant volume: 
 

𝑑𝑈 = 𝑇𝑑𝑆 = 𝑄 = 𝐶;𝑑𝑇 

𝑑𝑆 = 𝐶;
𝑑𝑇
𝑇

 

Δ𝑆 = 𝐶; =
𝑑𝑇
𝑇

>?@?A?BC

>D?@BC
= 𝐶;𝑙𝑜𝑔

𝑇+,+-+./
𝑇0+,./

 

 

pfinalVfinal
γ = pinitialVinitial

γ

pfinalVfinalVfinal
γ−1 = pinitialVinitialVinitial

γ−1

TfinalVfinal
γ−1 =TinitialVinitial

γ−1

Tfinal =Tinitial
Vinitial
Vfinal

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

γ−1
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Using the result of the adiabatic expansion 
 

Δ𝑆 = 𝐶;𝑙𝑜𝑔H
𝑉0+,./
𝑉+,+-+./

I
JKL

= 𝐶;(𝛾 − 1)𝑙𝑜𝑔 H
𝑉0+,./
𝑉+,+-+./

I = Q𝐶R − 𝐶;S𝑙𝑜𝑔 H
𝑉0+,./
𝑉+,+-+./

I 

 
 
An alternative method is to consider that the internal energy of the initial and final states is the same. 
We can therefore chose a quasi-static process that has dU=0 at all times. This gives us: 
 

𝑇𝑑𝑆 = 𝑝𝑑𝑉 

𝑑𝑆 =
𝑝
𝑇
𝑑𝑉 = 𝑁𝑘

𝑑𝑉
𝑉

 

 
Where we have used the equation of state in the last step. Integrating we have: 

Δ𝑆 = = 𝑁𝑘
𝑑𝑉
𝑉

;D?@BC

;?@?A?BC
= 𝑁𝑘	𝑙𝑜𝑔H

𝑉0+,./
𝑉+,+-+./

I 

 
These two solutions are equivalent since it can be shown that 𝑁𝑘 = Q𝐶𝑝 − 𝐶𝑉S. 
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Consider a system of N independent (uncoupled) harmonic oscillators with the same angular 
frequency w (this could represent, e.g., an Einstein model for a crystal). For each oscillator, the 
energy of state n is given by: 

𝐸, = ℏ𝜔 H𝑛 +
1
2
I 

 
a. Find the internal energy of the system at temperature T (the solution may be left in the 

form of a sum of an infinite number of terms). 
b. Find the temperature dependence of the heat capacity of the system in the limit of low 

temperatures (be careful to keep at least the lowest order of temperature dependence).  
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SOLUTION  
 
 
Part (a): The internal energy of the system is given by the sum of the internal energy of each 
state time the probability of occupation of such state. We have therefore: 
 

𝑈 = [ 𝑝,𝐸,

\

,]^

 

 
Since the N oscillators are independent, the internal energy of the system will simply be the 
average energy of one oscillator times the number of oscillators: 
 

𝑈 = 𝑁[𝑝,ℏ𝜔 H𝑛 +
1
2
I

\

,]^

 

 
Since the states are not degenerate, we simply have for the probabilities: 
 

𝑝, =
𝑒K

`@
a>

∑ 𝑒K
`c
a>\

d]^

=
𝑒K

ℏef,gL*h
a>

∑ 𝑒K
ℏefdgL*h

a>\
d]^

=
𝑒K

ℏe
*a>𝑒K

,ℏe
a>

𝑒K
ℏe
*a> ∑ 𝑒K

dℏe
a>\

d]^

=
𝑒K

,ℏe
a>

∑ 𝑒K
dℏe
a>\

d]^

 

 
Plugging these into the equation above yields: 
 

𝑈 =
𝑁

∑ 𝑒K
dℏe
a>\

d]^

[ 𝑒K
,ℏe
a> ℏ𝜔 H𝑛 +

1
2
I

\

,]^

=
𝑁

∑ 𝑒K
dℏe
a>\

d]^

i
1
2
[ 𝑒K

,ℏe
a> ℏ𝜔

\

,]^

+[𝑛𝑒K
,ℏe
a> ℏ𝜔

\

,]^

j = 

=
1
2
𝑁ℏ𝜔∑ 𝑒K

,ℏe
a>\

,]^

∑ 𝑒K
dℏe
a>\

d]^

+
𝑁ℏ𝜔∑ 𝑛𝑒K

,ℏe
a>\

,]^

∑ 𝑒K
dℏe
a>\

d]^

= 𝑁ℏ𝜔k
1
2
+
∑ 𝑛𝑒K

,ℏe
a>\

,]^

∑ 𝑒K
dℏe
a>\

d]^

l 

 
 
Part (b): The heat capacity is the derivative of the internal energy with respect to the 
temperature. We first approximate the solution above for low temperatures. We note that the 

exponential term 𝑒K
@ℏm
no  becomes increasingly small for increasing n. Therefore, we keep only 

the first term of the sums. We have: 
 

∑ 𝑛𝑒K
,ℏe
a>\

,]^

∑ 𝑒K
dℏe
a>\

d]^

~
𝑒K

ℏe
a>

1
= 𝑒K

ℏe
a>  

 
This yields: 
 

𝜕𝑈
𝜕𝑇

=
𝜕
𝜕𝑇

H𝑁ℏ𝜔𝑒K
ℏe
a> I = 𝑁

ℏ*𝜔*

𝑘𝑇*
𝑒K

ℏe
a>  
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