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OSU Physics Department
Comprehensive Examination #133

Solutions

Monday, January 7 and Tuesday, January 8, 2019

Winter 2019 Comprehensive Examination

Electricity & Magnetism 9 AM-12 PM Monday, January 7
Classical Mechanics 1 PM-4 PM Monday, January 7

Statistical Mechanics 9 AM-12 PM Tuesday, January 8
Quantum Mechanics 1 PM-4 PM Tuesday, January 8

General Instructions

This Winter 2019 Comprehensive Examination consists of four separate parts
of two problems each, and you have three hours to work on each part. Each
problem caries equal weight (20 points). Work carefully, indicate your reasoning,
and display your work clearly. Even if you do not complete a problem, it might
be possible to obtain partial credit—especially if your understanding is manifest.
Use no scratch paper; do all work on the provided pages, work each problem in its
own labeled pages, and be certain that your chosen student letter (but not your
name) is on the header of each page of your exam, including any unused pages.
If you need additional paper for your work, use the blank pages provided. Each
page of work should include the problem number, a page number, your chosen
student letter, and the total number of pages actually used. Be sure to make
note of your student letter for use in the remaining parts of the examination.

If something is omitted from the statement of the problem or you feel there
are ambiguities, please get up and ask your question quietly and privately, so
as not to disturb the others. Put all materials, books, and papers on the floor,
except the exam and the collection of formulas distributed with the exam. Cal-
culators are not allowed except when a numerical answer is required—calculators
will then be provided by the person proctoring the exam. Please staple and re-
turn all pages of your exam—including unused pages—at the end of the exam.

Monday morning Problem 0



Electricity & Magnetism Problem 1 2

Mass spectrometer Consider the following system. An ion with charge +e is
accelerated upward (in the figure below) from rest through a potential difference

of V . Then the ion enters a region with uniform ~B field directed into the page
with magnitude B. The ion is detected moving downward (the opposite of the
direction it was moving when it entered the region with uniform magnetic field)
a distance ` from its entry point. Neglect gravity.

(a) What is the mass of the ion?

(b) How would your answer for the mass change if it turned out that the
charge on the ion was +2e?
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Mass spectrometer Consider the following system. An ion with charge +e is
accelerated upward (in the figure below) from rest through a potential difference

of V . Then the ion enters a region with uniform ~B field directed into the page
with magnitude B. The ion is detected moving downward (the opposite of the
direction it was moving when it entered the region with uniform magnetic field)
a distance ` from its entry point. Neglect gravity.

(a) What is the mass of the ion?

Solution: .

The ion has two steps here: an acceleration through a potential V followed
by circular motion in the magnetic field. The motion is circular because
the velocity is orthogonal to ~B and thus the force is orthogonal to the
velocity.

I will begin with the acceleration of the ion. The change in potential
energy is eV , which must be equal to the final kinetic energy. Thus

1

2
mv2 = eV (1.1)

v =

√
2eV

m
(1.2)

An incorrect approach to this would be to assume that the E-field is
uniform in the ion gun and then use the equations of kinematics to solve
for the speed. This would give a correct answer, but does not indicate
that the answer is independent of the geometry of the ion gun.

Now we need to deal with the circular motion. Here we need to know the
force acting on the ion, which is given by the Lorentz expression.

~F = e~v × ~B (1.3)

Note that in Gaussian units this would be divided by the speed of light
c. The force is initially to the left, and continues to be orthogonal to the
velocity. The magnitude of the force is

|~F | = evB (1.4)
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Now we need to invoke Newton’s second law, and can either remember the
expression for centripetal acceleration or derive it. As graduate students,
you should be able to derive the centripetal acceleration in a couple of
minutes. Given that the ion is traveling in a circle with speed v and
radius R, its position is given by:

~r = R (x̂ cos(vt/R) + ŷ sin(vt/R)) (1.5)

~v =
d~r

dt
(1.6)

= v (−x̂ sin(vt/R) + ŷ cos(vt/R)) (1.7)

~a =
d~v

dt
(1.8)

= −v
2

R
(x̂ cos(vt/R) + ŷ sin(vt/R)) (1.9)

Thus the magnitude of the acceleration is v2/R. This tells us that

~F = m~a (1.10)

|~F | = m|~a| (1.11)

eBv =
mv2

R
(1.12)

R =
mv

eB
(1.13)

=

√
2meV

eB
(1.14)

m =
R2eB2

2V
(1.15)

Now the radius is going to be half of `, so we find that

m =
`2eB2

8V
(1.16)

(b) How would your answer for the mass change if it turned out that the
charge on the ion was +2e?

Solution: .
Since the mass is proportional to e, it must be twice as large if the charge
turns out to be twice what we originally thought.
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Parallel plates Consider a parallel plate capacitor with area A and distance
between plates ` which is half full of dielectric with relative dielectric constant ε.
The capacitor is hooked up to a battery with voltage V . The distance between
the plates is small compared to the transverse dimensions of the plates.

(a) What is the force on the upper plate?

(b) Suppose the upper plate is lowered until it touches the dielectric (thus
cutting the distance between the two plates in half) while still connected
to the same battery. What would the new force be?
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Parallel plates Consider a parallel plate capacitor with area A and distance
between plates ` which is half full of dielectric with relative dielectric constant ε.
The capacitor is hooked up to a battery with voltage V . The distance between
the plates is small compared to the transverse dimensions of the plates.

(a) What is the force on the upper plate?

Solution: .
There are a couple of ways to find the force on the upper plate. We can
either compute the energy stored in the capacitor and take an appropriate
derivative, or we can compute the electric field felt by the upper place and
the charge on it and use those to find the force. The former approach is
slightly more tricky, because we have to ensure that we take the derivative
with the battery disconnected (i.e. holding the charge fixed, not the po-
tential). So instead I will demonstrate the solution where we compute the
force directly from the electric field and charge. Afterwards I will explain
in more detail why taking a derivative of the energy of the capacitor with
the potential held fixed gives the wrong answer.

I’ll begin by solving for the charge and electric field. Because the plates
are close together (relative to their

√
A), we can assume that the electric

field is always vertical within the plates, neglecting edge effects. We can
use Gauss’s law ~∇ · ~D = ρf to solve for the D-field, and then find the
E-field from the fact that the material is a linear dielectric. Naturally
we’ll want the integral version of Gauss’s Las:∮

~D · d ~A = Qenc (2.1)

To start, we draw a couple of Gaussian surfaces, show in Fig. 1. Each

Figure 1: Gaussian surfaces for finding the electric field.
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surface has its top surface in the metal where the field is zero. The side
surfaces have their normal orthogonal to the field direction, so there is
zero flux. Thus the total flux through the enclosed surface is just the flux
through the bottom of the surface, which is given by∮

~D · d ~A = DAbot (2.2)

where D is the magnitude of the D-field and Abot is the area of the bottom
of the Gaussian surface. I’m not going to worry about signs here, because
they won’t affect the final answer. Thus we find that

DAbot = Qenc (2.3)

DA = Q (2.4)

where in the last step I made use of the fact that the enclosed charge is
proportional to the area of the Gaussian surface. You could also make
the Gaussian surface as wide as the capacitor to begin with, thus skipping
this step.

We now see that the D-field is uniform thoughout the capacitor, which
makes the E-field have different values in the dielectric and in the vacuum.

E(z) =
D

ε(z)
(2.5)

=

{
Q
ε0A

in vacuum
Q

εrε0A
in the dielectric

(2.6)

In this answer I used εr to represent the relative dielectric constant (con-
trary to what was stated in the exam) to provide improved clarity. (Stu-
dents who assumed ε was the non-relative dielectric constant were not
penalized for this.)

Our problem at the moment is that we don’t know the charge on the di-
electric. To do that, we can integrate the electric field to find the potential
difference, and set it to that of the battery.

|V | =
∫
Edz =

Q

ε0A

`

2
+

Q

εrε0A

`

2
(2.7)

Thus we find that

Q =
V Aε0
`

2

1 + 1
εr

(2.8)

We also see that the electric field in the vacuum is given by

E =
Q

ε0A
=
V

`

2

1 + 1
εr

(2.9)
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Finding the force from ~E Now we need to find what the force is,
given the electric field and the charge. The most common mistake on this
problem was to simply multiply the two. This is incorrect, and there are
a couple of explanations as to what this is the case. The charge is living
at the surface. The field is zero immediately above the surface, and has
the above value immediately below the surface. So it is not immediately
obvious whether the proper electric field to use would be zero or Q

ε0
. How

to resolve this quandary?

One way to do this is to consider why the E-field is discontinuous at this
surface. It is discontinuous at the surface because there is a surface charge
here. But the net force on the surface charge due to itself must be zero
(based on Newton’s Third Law, if you like). So we need instead to only
account for the force due to the opposite surface (the dielectric in a planar
symmetry such as this exerts zero force, because it has zero net charge),
and thus we only need account for the E-field due to the opposite surface.
There are several approaches we could use to directly find the field due to
the opposite surface, but we can also use a simple symmetry argumet to
show that it must be half of the E field in the vacuum. This is because
the E-fields of the two surfaces must exactly cancel inside the metal. So
we get a factor of two.

A second argumet we could use would be to equate the change in energy
stored in the vacuum with the mechanical work done when moving the
metal surface. The energy density in the vacuum has a factor of 1

2 in it
that gives us the same correction factor of a half.

In either case, our answer for the force is that it is

F =
1

2
QE =

1

2

V 2Aε0
`2

(
2

1 + 1
εr

)2

(2.10)

with its direction downward (towards the other plate). The direction of the
force we can get by simply recognizing that the two plates have opposite
charges, which attract. Alternatively, you could keep track of the sign of
the charge and the direction of the E-field as you do the calculation.

Finding the force from U An alternative approach to finding the force
on the plate is to take a derivative of the electrostatic energy stored in the
capacitor as the height of the capacitor changes. A common mistake here
is to hold the voltage fixed rather than holding the charge fixed.

There is one more subtlety, which is that when we move the top capacitor,
we don’t change the thickness of the dielectric, so taking a simple deriva-
tive with respect to ` is incorrect, if we use any expression that uses `/2
as the thickness of the dielectric. Intead we need to be careful to give the
thickness of the dielectric a different name than the height of the metal
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slab (I’ll use h). Thus we will need to go back to our integral finding V
to see that

|V | =
∫
Edz =

Q

ε0A
(`− h) +

Q

εrε0A
h (2.11)

C =
Q

V
=

ε0A

`−
(

1− 1
εr

)
h

(2.12)

I’ll begin this explanation by working out the energy stored. There are
different approaches here, but it is simplest is to simply use the equations
for a capacitor (if you remember them):

U =
1

2
QV =

Q2

2C
=

1

2
CV 2 (2.13)

=
1

2

ε0A

`−
(

1− 1
εr

)
h
V 2 (2.14)

=
1

2ε0A

(
`−

(
1− 1

εr

)
h

)
Q2 (2.15)

We now have two ways we could take a derivative ∂U
∂` : We could either

evaluate
(
∂U
∂`

)
V

or
(
∂U
∂`

)
Q

. If we want to take a derivative of the stored

electrostatic energy, we need to justify which derivative will give us the
force. This justification is more subtle, since it requires us to reason about
how (and whether) the battery affects the force.

Moving back to the question of what to hold fixed, The battery cannot
directly affect the force between the plates. The force on the plates must
be purely electrostatic, and the only way the battery can cause an elec-
trostatic force is by putting charge on the plates. Thus we must get the
same force whether we disconnect the battery or leave it connected.

If we disconnect the battery, then we can see that when the plate is moved,
the only energy that changes is the energy stored in the capacitor, and
therefore energy conservation tells us that the change in this energy must
be equal to the mechanical work done.

Conversely, if you move the plates with the battery connected, then the
charges will change. That means that current will flow through the battery
when you move the plate, and thus the battery will do electrochemical
work. Thus the change in the energy stored in the capacitor will be equal
to not just the mechanical work, but rather the sum of mechanical and
electrochemical (or battery) work. We absolutely could use this approach
(the work done by the battery is just V∆Q, after all), but I am not going



Electricity & Magnetism Solution to problem 2 10

to bother. Instead I will just conclude that

F =

(
∂U

∂`

)
Q

(2.16)

=
1

2ε0
Q2 (2.17)

=
1

2

Q

ε0
Q (2.18)

=
1

2
EQ (2.19)

which is the same answer we found above (and I won’t repeat). Again,
you should indicate that the force is downward, towards the other plate.

(b) Suppose the upper plate is lowered until it touches the dielectric (thus
cutting the distance between the two plates in half) while still connected
to the same battery. What would the new force be?

Solution: .
There is an implicit assumption here that we will ignore any normal force
due to the two solids touching. One approach to solving this would be to
imagine an infinitesimal vacuum gap between the dielectric and the metal
plate. The electric field will then be Q

ε0A
in this gap based on the same

Gaussian reasoning above. So once we solve for the charge we will be able
to use the same expression above. The charge in this case is way easier.
I’ll just take Eq. 2.11 above and set ` = h, which tells us that

V =
Q

εrε0A
h =

Q

εrε0A

`

2
(2.20)

where in the second expression I gave h the name `/2 that was specified
in the problem. The force is thus

F =
1

2
QE (2.21)

=
1

2
Q

Q

ε0A
(2.22)

=
1

2ε0A

4ε2rε
2
0V

2A2

`2
(2.23)

F =
1

2

V 2ε0A

`2
(
4ε2r
)

(2.24)

This is the same answer we would get if we had taken the solution to part
(a) and removed the one from the denominator. (Note here that one thing
to check is that the final answer must be proportional to the area, if that
doesn’t work out, then our answer wouldn’t make sense, since the total
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force must scale with the total amount of charge, which itself must scale
with the total size of the capacitor.)

Another way to approach this (and similarly on the previous part) would
be to solve for the electric field due to everything but the top plate. This
would give you the same answer for the final force, but your electric field
due to the bottom plate + dielectric would be Eeverything but top plate =
Q

2ε0A
and the factor of 1

2 not be included in the F = QEeverything but top plate

equation.
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Two identical, uniform rods of mass m and length `, connected by a string, are
hung from the ceiling via another string, as shown in Figure 2. Both strings
have negligible mass and length. The system forms a physical double pendulum
in the plane of the paper. g is the gravitational constant near the earth and its
direction is indicated by the arrow in the drawing.
Note: The moment of inertia of each rod about its own center of mass is

Icm =
1

12
m`2.

(a) For small oscillations around the equilibrium, find the frequencies of the
normal modes of the system.

(b) For each of the normal modes, describe the motion of the system.

Figure 2: The double pendulum.



Classical Mechanics Solution to problem 3 13

Two identical, uniform rods of mass m and length `, connected by a string, are
hung from the ceiling via another string, as shown in Figure 2. Both strings
have negligible mass and length. The system forms a physical double pendulum
in the plane of the paper. g is the gravitational constant near the earth and its
direction is indicated by the arrow in the drawing.
Note: The moment of inertia of each rod about its own center of mass is

Icm =
1

12
m`2.

(a) For small oscillations around the equilibrium, find the frequencies of the
normal modes of the system.

Solution: .
Let θ and φ be the angles of the top and bottom rods with respect to the
vertical, respectively.

Figure 3: The double pendulum solution.

The kinetic energy of the system is

T =
1

2

[
m

(
`

2
θ̇

)2

+
1

12
m`2θ̇2 +m

(
`2θ̇2 + `2θ̇φ̇ cos(θ − φ) +

`2

4
φ̇2

)
+

1

12
m`2φ̇2

]
.

The potential energy of the system is

V = mg
`

2
(1− cos θ) +mg

[
3

2
`−

(
` cos θ +

`

2
cosφ

)]
.

For small oscillations around the equilibrium, we have the following ap-
proximations

1− cos θ ≈ 1

2
θ2, 1− cosφ ≈ 1

2
φ2, cos(θ − φ) ≈ 1.

Thus, for small oscillations around the equilibrium, the Lagrangian of the
system is

L = T − V =
4

6
m`2θ̇2 +

1

2
m`2θ̇φ̇+

1

6
m`2φ̇2 − 1

4
mg`(3θ2 + φ2).
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Lagrange’s equations are
1

2

(
8

3
`θ̈ + `φ̈+ 3gθ

)
= 0

1

2

(
`θ̈ +

2

3
`φ̈+ gφ

)
= 0,

or 
1

2

(
8

3
θ̈ + φ̈+ 3ω2

0θ

)
= 0

1

2

(
θ̈ +

2

3
φ̈+ ω2

0φ

)
= 0,

where ω0 =

√
g

`
.

To look for normal modes, we assume the following forms for θ and φ

θ = A cosωt, φ = B cosωt.

The above Lagrangian’s equations become

(
3

2
ω2

0 −
4

3
ω2

)
A− 1

2
ω2B = 0

−1

2
ω2A+

(
1

2
ω2

0 −
1

3
ω2

)
B = 0.

This yields normal mode frequencies of

ω2 =

(
3± 6√

7

)
ω2

0 .

(b) For each of the normal modes, describe the motion of the system.

Solution: .
For each of the normal modes, describe the motion of the system.

For the ω2 =

(
3 +

6√
7

)
ω2

0 frequency, B =

(
−2
√

7

3
− 1

3

)
A.

For the ω2 =

(
3− 6√

7

)
ω2

0 frequency, B =

(
2
√

7

3
− 1

3

)
A.
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Consider the motion of a particle of mass m with a potential energy

V (~r) = −k
r
− α

2r2
,

where k > 0, ~r is the position vector of the particle from the origin and r is
the distance from the particle to the origin. At t = 0, the particle has angular
momentum ~L, the magnitude of which is L.

(a) Show that the angular momentum ~L is conserved.

(b) Determine the value of α for which the particle moves in a circular orbit
of radius r0? Express α in terms of k, L, m, and r0.
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Consider the motion of a particle of mass m with a potential energy

V (~r) = −k
r
− α

2r2
,

where k > 0, ~r is the position vector of the particle from the origin and r is
the distance from the particle to the origin. At t = 0, the particle has angular
momentum ~L, the magnitude of which is L.

(a) Show that the angular momentum ~L is conserved.

Solution: .
Because the potential energy of the particle is only a function of r, the
force on the particle ~F is

~F = − d

dr

(
−k
r
− α

2r2

)
r̂ =

(
− k

r2
− α

r3

)
r̂.

The torque on the particle with respect to the origin is

τ = ~r × ~F = rr̂ ×
(
− k

r2
− α

r3

)
r̂ = 0.

From
d~L

dt
= τ , we have

d~L

dt
= 0.

Thus, the angular momentum ~L of the particle is conserved.

(b) Determine the value of α for which the particle moves in a circular orbit
of radius r0? Express α in terms of k, L, m, and r0.

Solution: .
The effective potential of the particle is

Veff(~r) = V (~r) +
L2

2mr2
= −k

r
− α

2r2
+

L2

2mr2
.

For the particle to move in a circular orbit of radius r0, the effective
potential Veff(~r) satisfies

d

dr
Veff(~r) =

d

dr

(
−k
r
− α

2r2
+

L2

2mr2

)∣∣∣∣
r=r0

= 0,

which yields
k

r2
0

+
α

r3
0

− L2

mr3
0

= 0.

Thus

α =
L2

m
− kr0.
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Alternative solution to (b) Another solution to part (b) would be to
use the centripetal acceleration and Newton’s second law. If the particle
is moving in a circular orbit, the magnitude of its accelreation must be

a =
v2

r0
(4.1)

F = ma (4.2)

=
mv2

r0
(4.3)

The speed may be computed from the given angular momentum

~L = ~r × ~p (4.4)

L = r0mv (4.5)

v =
L

r0m
(4.6)

Putting this into an expression for the force give us

F =
m
(

L
r0m

)2

r0
(4.7)

=
L2

mr3
0

(4.8)

=
k

r2
0

+
α

r3
0

(4.9)

α =
L2

m
− kr0 (4.10)

This approach would be more suitable if you are unfamiliar with effective
potentials for central forces.



1. An experiment is carried out on a thermodynamic system made of N atoms, each of which can 
assume three possible states with energies E0, E1, and E2. The N atoms are independent and do 
not interact with each other. The experiment reveals that at temperature T the fraction of 
atoms in the ground level is a0, while the fraction of atoms in the first excited state is a1. Find 
equations to express the value of E1, and E2, assuming E0=0. 
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1. An experiment is carried out on a thermodynamic system made of N atoms, each of which can 
assume three possible states with energies E0, E1, and E2. The N atoms are independent and do 
not interact with each other. The experiment reveals that at temperature T the fraction of 
atoms in the ground level is a0, while the fraction of atoms in the first excited state is a1. Find 
equations to express the value of E1, and E2, assuming E0=0. 

 
 
 

Using statistical mechanics, we know that the fraction of atoms in a given state reads: 

𝑃" =
𝑒%

&'
()

𝑍
 

Where Z is the partition function of the system. The probability is also given by: 

𝑃" =
𝑁"
𝑁
= 𝛼" 

The ratio of the number of atoms in the i-th excited state to those in the ground state is therefore 
given by: 

𝑃"
𝑃-
=
𝑒%

&'
()
𝑍

𝑒%
&.
()
𝑍

=
𝑒%

&'
()

𝑒%
&.
()
= 𝑒%

(&'%&.)
()  

This is also equal to: 
𝑃"
𝑃-
=
𝑁"
𝑁1

=
𝛼"
𝛼1

 

 
Combining these two: 

𝛼"
𝛼1

= 𝑒%
(&'%&.)
()  

And, solving for Ei: 

𝐸" = 𝐸1 + 𝑘𝑇𝑙𝑛 8
𝛼1
𝛼"
9 

 
From which, remembering that E0=0: 
 

𝐸: = 𝑘𝑇𝑙𝑛 ;<.
<=
>;        𝐸? = 𝑘𝑇𝑙𝑛 ; <.

:%<.%<=
>; 
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2. A metal sphere (e.g. a ball bearing) of mass m falls on a gas cylinder with a piston, isolated with 
Styrofoam, from an initial height h (see figure below). After a few bounces, the ball comes to 
rest on top of the piston (final state figure). Assume that the surroundings (air, cylinder, piston, 
sphere) do not absorb any energy in the process, and adopt ideal gas laws (𝑝𝑉 = 𝑁𝑘𝑇;𝑈 =
)
*
𝑁𝑘𝑇). Find the height h for which the volume of the gas remains unchanged after the gas has 

reached a steady-state configuration. 
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2. A metal sphere (e.g. a ball bearing) of mass m falls on a gas cylinder with a piston, isolated 
with Styrofoam, from an initial height h (see figure below). After a few bounces, the ball 
comes to rest on top of the piston (final state figure). Assume that the surroundings (air, 
cylinder, piston, sphere) do not absorb any energy in the process, and adopt ideal gas laws 
(𝒑𝑽 = 𝑵𝒌𝑻;𝑼 = 𝟑

𝟐
𝑵𝒌𝑻). Find the height h for which the volume of the gas remains 

unchanged after the gas has reached a steady-state configuration. 
 
 

 
 
 
 

Since the volume remains constant, there is no work involved. This implies that the change in 
pressure of the gas is equal to the pressure added by the weight of the sphere. To find the pressure 
change, we consider the change in internal energy due to the transfer of the potential energy of the 
sphere to the gas. We have: 
 

∆𝑈 = 𝛿𝑄 = 𝑚𝑔ℎ 
 
Since it is an ideal gas, the change in internal energy is directly connected to the change in 
temperature: 
 

∆𝑈 =
3
2
𝑁𝑘∆𝑇 

 
We now consider the equation of state 𝑝𝑉 = 𝑁𝑘𝑇 which, combined to the equation above gives: 
 

∆𝑈 =
3
2
∆(𝑝𝑉) =

3
2
(𝑝∆𝑉 + 𝑉∆𝑝) =

3
2
𝑉∆𝑝 

 
Combining this with the first equation we have: 
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3
2
𝑉∆𝑝 = 	𝑚𝑔ℎ 

 
As a last step we notice that ∆𝑝 = 𝑚𝑔/𝐴, giving: 
 

3
2
𝑉∆𝑝 =	

3
2
𝑉
𝑚𝑔
𝐴

=
3
2
𝑚𝑔ℎWXY = 𝑚𝑔ℎ 

 
Simplifying out the mass ang gravity acceleration we find that the volume of the gas does not 
change if: 
 

ℎ =
3
2
ℎWXY 
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Measurements of the energy of an harmonic oscillator system yield the results  !ω 2  and 

 3!ω 2  with equal probability.  Measurements of the position of this system yield the 
expectation value  x = − ! 2mω sinωt .  Calculate the expectation value of the 
momentum as a function of time. 
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Solution: 
 
The two measured energies are the n = 0, 1 states, so the results tells us that: 

 
 
PEn = n ψ t( ) 2

= 1
2 δn0 +δn1( )  

Energy measurements are time independent, so we have no information on the time 
dependence of the amplitudes, but we know something about them from the Schrödinger 
time evolution.  Thus the original state and the time-evolved state are: 

 

ψ 0( ) = c0 0 + c1 1    ⇒    c0
2 = c1

2 = 1
2

ψ 0( ) = 1
2 eiθ0 0 + eiθ1 1⎡⎣ ⎤⎦

ψ t( ) = e− i
ωt
2 1

2 eiθ0 0 + eiθ1e− iωt 1⎡⎣ ⎤⎦

 

Now use this to find the expectation value of the position: 

 

 

x = ψ t( ) x ψ t( ) = !
2mω ψ t( ) a† + a ψ t( )

= !
2mω e

+ iωt2 1
2 e− iθ0 0 + e− iθ1 1 e+ iωt( ) a† + a( )e− iωt2 1

2 eiθ0 0 + eiθ1 1 e− iωt( )
= !

2mω
1
2 e− iθ1e+ iωteiθ0 1 a† 0 + e− iθ0eiθ1e− iωt 0 a 1⎡⎣ ⎤⎦

= !
2mω

1
2 e+ iωt+iθ0 −iθ1 + e− iωt−iθ0 +iθ1⎡⎣ ⎤⎦ =

!
2mω cos ωt +θ0 −θ1( )

 

Hence  x = − ! 2mω sinωt  implies that θ0 −θ1( ) = π 2 .  The overall phase is 
unknown but doesn't matter (cannot be measured).  Now use this to find the expectation 
value of the momentum: 

 

 

p = ψ t( ) p ψ t( ) = i mω!
2 ψ t( ) a† − a ψ t( )

= mω!
2 e

+ iωt2 i
2 e− iθ0 0 + e− iθ1 1 e+ iωt( ) a† − a( )e− iωt2 1

2 eiθ0 0 + eiθ1 1 e− iωt( )
= mω!

2
i
2 e

− iθ1e+ iωteiθ0 1 a† 0 − e− iθ0eiθ1e− iωt 0 a 1( )
= mω!

2
i
2 e

+ iωt+iθ0 −iθ1 − e− iωt−iθ0 +iθ1( ) = − mω!
2 sin ωt +θ0 −θ1( ) = − mω!

2 sin ωt +π 2( )
= − mω!

2 cosωt
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Consider a quantum mechanical system with a three-dimensional state space. In the basis 
defined by three orthonormal kets 1 , 2 , and 3 , an observable A is represented by the 
matrix 

 

A ! a
3 0 0
0 0 2i
0 −2i 0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

, 

where a is a real, positive constant.  The Hamiltonian H of the system has three distinct 
eigenvalues E1 = b, E2 = 2b, and E3 = 3b (b is a real, positive constant) with 
corresponding eigenstates E1 = 1 , E2 = 2 , and E3 = 3 .  At time t = 0, the state of 
the system is 

ψ (0) = 1
6
1 + 1

2
2 + 1

3
3 . 

a) What is the matrix representation of the Hamiltonian H in the basis defined by 1 , 
2 , and 3 ? 

b) Find the expectation value H  and the r.m.s. deviation ΔH  at time t = 0. 
c) At time t0 (where t0 > 0) the observable A is measured.  What are the possible results 

of that measurement? 
d) What is the probability that the measurement of the observable A at time t0 yields a 

negative value? 
e) For the particular case where the result of the above measurement of A does yield a 

negative value, find the state of the system for times t > t0. 
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Solution: 
 
 
a) Because the states 1 , 2 , and 3  are the eigenstates of the Hamiltonian, the matrix 
representation of H in that basis is diagonal, with the corresponding eigenvalues along the 
diagonal: 

 

H !
E1 0 0
0 E2 0
0 0 E3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

b 0 0
0 2b 0
0 0 3b

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

. 

 
 
b) The expectation value H  is  

H = ψ H ψ = 1
6

1
2

1
3( )

b 0 0
0 2b 0
0 0 3b

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 

1
6

1
2

1
3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 1
6

1
2

1
3( )  

b
6

2b
2

3b
3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= b
6 + 2b

2 + 3b
3 = 13

6 b ≅ 2.2b

. 

 
The r.m.s. deviation ΔH  is 

ΔH = H − H( )2 = H 2 − H 2 , 

so first we need to find the expectation value H 2 : 

H 2 = ψ H 2 ψ = 1
6

1
2

1
3( )

b2 0 0
0 4b2 0
0 0 9b2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

1
6

1
2

1
3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 1
6

1
2

1
3( )  

b2

6

4b2

2

9b2

3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= b2

6 + 4b2

2 + 9b2

3 = 31
6 b

2

. 

Thus we get: 

ΔH = H 2 − H 2 = 31
6 b

2 − 13
6 b( )2 = 17

6 b ≅ 0.7b . 
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c) To find the possible results of a measurement of A, we need to know its eigenvalues, 
so diagonalize A: 

 

3a − λ 0 0
0 −λ 2ia
0 −2ia −λ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ = 0   ⇒   3a − λ( ) λ 2 − 4a2( ) = 0 

 ⇒  λ = 3a,2a,−2a

 

Hence the possible results of the measurement of the observable A are 
 a1 = 3a, a2 = 2a, a3 = −2a  

 
 
d) We now need to know the eigenvector of the negative eigenvalue: 

 

 

a
3 0 0
0 0 2i
0 −2i 0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

u
v
w

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= −2a

u
v
w

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
   ⇒   

3u = −2u
2iw = −2v
−2iv = −2w

   ⇒   v = −iw,u = 0

u 2 + v 2 + w 2 = 1   ⇒    v 2 + w 2 = 1   ⇒   u = 0,v = 1
2 ,w = i

2    ⇒    a3 !
0
1
2

i
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

The time-evolved state vector is 

 

ψ (t) = 1
6 e

− i E1t
! 1 + 1

2 e
− i E2t
! 2 + 1

3 e
− i E3t
! 3

= 1
6 e

− ibt
! 1 + 1

2 e
− i2bt
! 2 + 1

3 e
− i3bt
! 3

. 

The probability of measuring the negative eigenvalue of A at time t0  is 

 

  

Pa3 = a3 ψ t0( ) 2
= 0 1

2
− i
2( )

1
6 e

− ibt0
!

1
2 e

− i2bt0
!

1
3 e

− i3bt0
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

2

= 1
4 e

− i2bt0
! − i

6 e
− i3bt0
!

2

= 1
6

3
2 − ie

− ibt0
!

2

= 1
6

3
2 +1− i 3

2 e
− ibt0
! + i 3

2 e
+ ibt0
!

⎛
⎝⎜

⎞
⎠⎟
= 1

6
5
2 − 2 3

2 sin
bt0
!

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= 5
12 − 1

6 sin
bt0
!

⎛
⎝⎜

⎞
⎠⎟
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e) The state vector immediately after the measurement of the negative eigenvalue is the 
corresponding eigenstate: 

 

 

ψ t0( ) = a3 !
0
1
2

i
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

This state will time evolve to 

 

 

ψ t > t0( ) !

0

1
2 e

− i
E2 t−t0( )
"

i
2 e

− i
E3 t−t0( )
"

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

0

1
2 e

− i
2b t−t0( )
"

i
2 e

− i
3b t−t0( )
"

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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