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OSU Physics Department
Comprehensive Examination #128

Solutions

Monday, April 3 and Tuesday, April 4, 2017

Spring 2017 Comprehensive Examination

Quantum Mechanics 9 AM-12 PM Monday, April 3
Statistical Mechanics 1 PM-4 PM Monday, April 3
Classical Mechanics 9 AM-12 PM Tuesday, April 4

Electricity and Magnetism 1 PM-4 PM Tuesday, April 4

General Instructions

This Spring 2017 Comprehensive Examination consists of four separate parts of
two problems each. Each problem caries equal weight (20 points each) and lasts
three hours. Work carefully, indicate your reasoning, and display your work
clearly. Even if you do not complete a problem, it might be possible to obtain
partial credit—especially if your understanding is manifest. Use no scratch
paper; do all work on the provided pages, work each problem in its own labeled
pages, and be certain that your chosen student letter (but not your name) is on
the header of each page of your exam, including any unused pages. If you need
additional paper for your work, use the blank pages provided. Each page of
work should include the problem number, a page number, your chosen student
letter, and the total number of pages actually used. Be sure to make note of
your student letter for use in the remaining parts of the examination.

If something is omitted from the statement of the problem or you feel there
are ambiguities, please get up and ask your question quietly and privately, so
as not to disturb the others. Put all materials, books, and papers on the floor,
except the exam and the collection of formulas distributed with the exam. Cal-
culators are not allowed except when a numerical answer is required—calculators
will then be provided by the person proctoring the exam. Please staple and re-
turn all pages of your exam—including unused pages—at the end of the exam.

Monday morning Problem 0
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The first few eigenstates of the hydrogenic atom (an atom with a single electron)
are given by
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Z
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where Z is the nuclear charge and a0 is the Bohr radius. Note that the 2px
and 2py eigenstates are convenient linear combinations of the ` = 1, m = ±1
eigenstates.

Consider a tritium atom (a hydrogen atom with a nucleus consisting of one
proton and two neutrons) initially in its ground state. This isotope of hydrogen
spontaneously turns into a Helium ion via β decay. The electron produced
via the decay has around 6 keV of kinetic energy, and thus exits the picture
rapidly. Assume that the only effect of the decay is to change the nuclear
charge instantaneously from Z = 1 to Z = 2.

What is the probability that the resulting Helium ion will be in its ground
state after the β decay?

You may find useful the following integral:∫ ∞
0

xne−xdx = n!
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This is an abrupt transition, which means the wave function will not have any
time to change, although the potential does change. So the probability of ending
up in the state |1s〉He will be given by the square of the projection of the initial
state onto this final state:

P = |〈1s|He|1s〉H|2 (1.6)
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Consider a two-dimensional harmonic oscillator with the Hamiltonian

H =
p2x
2m

+
p2y
2m

+
mω2

2
(x2 + y2) (2.1)

a) Write down the energy of this system in terms of appropriate quantum
numbers.

b) Now add to this system an anharmonic perturbation

V1 = ε
m2ω3

~
(
x2 + y2

)2
(2.2)

where ε > 0 and ε� 1. Solve for the first-order correction to the energies
of the three lowest-energy eigenstates.
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Consider a two-dimensional harmonic oscillator with the Hamiltonian

H =
p2x
2m

+
p2y
2m

+
mω2

2
(x2 + y2) (2.3)

a) Write down the energy of this system in terms of appropriate quantum
numbers.

Solution: .
This is a standard 2D harmonic oscillator. The problem separates in the
x and y coordinates, but you aren’t expected to show or prove this when
asked simply to “write down” the energies. The energies are just the sum
of the energies for the two (separable) coordinates:

Enx,ny
= ~ω
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= ~ω (nx + ny + 1) (2.5)

b) Now add to this system an anharmonic perturbation

V1 = ε
m2ω3

~
(
x2 + y2

)2
(2.6)

where ε > 0 and ε� 1. Solve for the first-order correction to the energies
of the three lowest-energy eigenstates.

Solution: .
At this point we should recognize that the three lowest-energy eigenstates
are |00〉, |01〉, and |10〉. The latter two are degenerate, so we will need
to consider degenerate perturbation theory for them. This means we are
going to need a lot of matrix elements of the perturbation, and hopefully
you are already thinking that raising and lowering operators will be helpful
here. Doing all these integrals by hand could be painful.

Fortunately, the formula sheet gives us all we need:
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a†|n〉 =
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a|n〉 =
√
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(2.11)

We start by solving for x, and making explicit that we now have raising
and lowering operators for each direction.

ax + a†x =

√
2mω

~
x (2.12)
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x =
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Now let us look at an expansion of V1. The form given in the problem
helps us to see that this has rotational symmetry, but right now separating
x and y is appealing.

V1 = ε
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)
(2.16)

Let’s start with the ground state, looking at just one of the three terms
at a time:
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Just one matrix element left and we’ll have the ground state shift.

〈00|x2y2|00〉 = 〈0|x2|0〉〈0|y2|0〉 (2.26)

by which I mean that we can do the x2y2 matrix element as two separate
matrix elements in each of the two directions.

〈0|x2|0〉 =
~

2mω

(
〈0|a+ a†

) (
a+ a†|0〉

)
(2.27)

=
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m2ω3
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Thus we find that

〈00|V1|00〉 = ε
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The shift of the ground state is thus:

∆E00 = 2ε~ω (2.32)

Looking at the excited states is, of course, more work. I will take the
approach of applying x2 and y2 respectively to |10〉, from which (using
symmetry) I can get all the matrix elements using inner products such as
(〈10|x2)(y2|10〉). The first we have already done the work for:
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Now for the second:
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Now we just have to mash these together in some inner products:
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Putting these together, we can find the diagonal elements of the Hamilto-
nian matrix within our degenerate subspace.

〈10|V1|10〉 = ε~ω
(

3

4
+

15

4
+ 2

3

4

)
(2.46)

= 6ε~ω (2.47)

〈01|V1|01〉 = 6ε~ω (2.48)

Now we just need the off-diagonal term. Almost there! Fortunately, we
can reuse our work from before, using symmetry to translate to |01〉.

m2ω3

~
〈01|y4|10〉 = 0 (2.49)

m2ω3

~
〈01|x4|10〉 = 0 (2.50)

These ones were easy, because the y4 doesn’t affect the x portion of the
state, which is orthogonal. And vice versa for the x4.
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So yay, the off-diagonal matrix elements are zero, so we don’t need to do
anything special here. This makes sense because this is a rotationally sym-
metric potential, so there is no way it could couple the x and y directions.
So our result is now easy:

∆E10 = ∆E01 = 6ε~ω (2.54)
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The equation of state and the internal energy of an ideal gas are given as

PV = NkBT and U =
3

2
NkBT,

where N is the number of particles, and P , V and T are the pressure, volume,
temperature of the gas.

a) The heat absorbed in an infinitesimal process is given by the first law as

dQ = TdS = dU + PdV.

Find the heat capacities at constant volume and at constant pressure of
an ideal gas,

CV =

(
∂Q

∂T

)
V

= T

(
∂S

∂T

)
V

and CP =

(
∂Q

∂T

)
P

= T

(
∂S

∂T

)
P

b) Two ideal gases with the same pressure P and the same number of par-
ticles N , but with different temperatures T1 and T2, are confined in two
compartments of volume V1 and V2. The two chambers are separated by
a freely movable wall through which heat can be exchanged. Find the
final temperature and the change in entropy after the system has reached
equilibrium.
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The equation of state and the internal energy of an ideal gas are given as

PV = NkBT and U =
3

2
NkBT,

where N is the number of particles, and P , V and T are the pressure, volume,
temperature of the gas.

a) The heat absorbed in an infinitesimal process is given by the first law as

dQ = TdS = dU + PdV.

Find the heat capacities at constant volume and at constant pressure of
an ideal gas,

CV =

(
∂Q

∂T

)
V

= T

(
∂S

∂T

)
V

and CP =

(
∂Q

∂T

)
P

= T

(
∂S
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)
P

Solution: .

The heat capacity at constant volume is

CV = T

(
∂S

∂T

)
V

=

(
∂U

∂T

)
V

=
3

2
NkB

With a constant pressure,

PdV = d(PV ) = d(NkBT ) = NkBdT,

and hence
dQ = dU + PdV = dU +NkBdT

Therefore, the heat capacity at constant pressure is

CP =

(
∂Q

∂T

)
P

=

(
∂U

∂T

)
P

+NkB =
5

2
NkB

b) Two ideal gases with the same pressure P and the same number of par-
ticles N , but with different temperatures T1 and T2, are confined in two
compartments of volume V1 and V2. The two chambers are separated by
a freely movable wall through which heat can be exchanged. Find the
final temperature and the change in entropy after the system has reached
equilibrium.

������� �������

���������	
���



Monday afternoon Solution to problem 3 11

Solution: .
Since the energy must be conserved,

U =
3

2
kBT1 +

3

2
NkBT2 =

3

2
2NkBTf ,

the final temperature is

Tf =
T1 + T2

2

The heat exchange between the gases occurs at the same pressure,

dQ = TdS = CP dT

Thus

∆S1 =

∫
dQ

T
= CP

∫ Tf

T1

dT

T
= CP ln

Tf
T1
.

Similarly,

∆S2 = CP ln
Tf
T2
.

Therefore, the total change in entropy is

∆S = ∆S1 + ∆S2 = Cp ln
T 2
f

T1T2
=

5

2
NkB ln

(T1 + T2)2

4T1T2
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Consider a one-dimensional harmonic oscillator which is in equilibrium with a
heat reservoir at absolute temperature T . The energy of such an oscillator is
given by

E =
p2

2m
+

1

2
κx2

where the first term on the right is the kinetic energy involving the momentum p
and mass m, and the second term on the right is the potential energy involving
the position coordinate x and spring constant κ.

a) The equipartition theorem states that the mean value of each independent
quadratic term in the energy is 1

2kBT , which is valid only in the classical
statistical mechanics, i.e, the Plank constant ~→ 0 in the classical limit.
What is the mean total energy of the harmonic oscillator according to the
equipartition theorem?

b) According to quantum mechanics the possible energy levels of the har-
monic oscillator are given by

En =

(
n+

1

2

)
~ω

where the quantum number n = 0, 1, 2, 3, · · · and the angular frequency
of oscillation ω =

√
κ/m.

(i) Find the mean total energy of the quantum harmonic oscillator.

(ii) Show that the mean total energy is in agreement with the classical
result at high temperature, kBT � ~ω.

You may find useful the geometric series:

∞∑
n=0

rn = 1 + r + r2 + r3 + · · · = 1

1− r
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Consider a one-dimensional harmonic oscillator which is in equilibrium with a
heat reservoir at absolute temperature T . The energy of such an oscillator is
given by

E =
p2

2m
+

1

2
κx2

where the first term on the right is the kinetic energy involving the momentum p
and mass m, and the second term on the right is the potential energy involving
the position coordinate x and spring constant κ.

a) The equipartition theorem states that the mean value of each independent
quadratic term in the energy is 1

2kBT , which is valid only in the classical
statistical mechanics, i.e, the Plank constant ~→ 0 in the classical limit.
What is the mean total energy of the harmonic oscillator according to the
equipartition theorem?

Solution: .
The mean total energy of the harmonic oscillator is

〈E〉 =

〈
p2

2m

〉
+

〈
1

2
κx2

〉
According to the equipartition theorem,〈

p2

2m

〉
=

〈
1

2
κx2

〉
=

1

2
kBT

Therefore,

〈E〉 =
1

2
kBT +

1

2
kBT = kBT

b) According to quantum mechanics the possible energy levels of the har-
monic oscillator are given by

En =

(
n+

1

2

)
~ω

where the quantum number n = 0, 1, 2, 3, · · · and the angular frequency
of oscillation ω =

√
κ/m.

(i) Find the mean total energy of the quantum harmonic oscillator.

(ii) Show that the mean total energy is in agreement with the classical
result at high temperature, kBT � ~ω.

Solution: .
(i) The mean total energy of the quantum harmonic oscillator is

〈E〉 =

∑∞
n Ene

−βEn∑∞
n e−βEn

= − 1∑∞
n e−βEn

· ∂
∂β

( ∞∑
n

e−βEn

)
= − 1

Z

∂Z

∂β
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where β = 1
kBT

and Z =
∑∞
n e−βEn . Since the partition function Z is

Z = e−
1
2β~ω

∞∑
n

e−nβ~ω =
e−

1
2β~ω

1− e−β~ω
=

1

2 sinh
(
1
2β~ω

) ,
the mean total energy is

〈E〉 = − sinh

(
1

2
β~ω

)
·

(
−

1
2~ω cosh

(
1
2β~ω

)
sinh2

(
1
2β~ω

) )
=

1

2
~ω coth

(
1

2
β~ω

)

(ii) At high temperature, kBT � ~ω → β~ω � 1, and hence the mean
total energy is approximately

〈E〉 =
1

2
~ω coth

(
1

2
β~ω

)
∼=

1

2
~ω

1
1
2β~ω

=
1

β
= kBT

The mean total energy at high temperature is in agreement with the clas-
sical result, kBT .

You may find useful the geometric series:

∞∑
n=0

rn = 1 + r + r2 + r3 + · · · = 1

1− r
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.
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A point charge q is placed inside of a conducting spherical shell of radius a. For
simplicity, we may assume the charge to be on the z axis and at a distance of d
from the center of the sphere. The shell does not have any net charge, and we
would like to characterize the electrostatics of the system.

a) Approximate the electric field at the center of the sphere in two cases (i)
when the point charge is very close to the center of the sphere (ii) when
the point charge is very close to the boundary of the sphere. Keep the
leading order terms, and offer physical explanation of the results.

b) Calculate the potential both inside and outside of the sphere, you can leave
the results as an infinite series but the coefficients should be explicitly
expressed in terms of a, d, q and other physical constants.

Note: you may find the Legendre polynomial useful:

1

|r− r′|
=
∑
n

r′n

rn+1
Pn(cos θ) (7.1)
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a) When q is close to the center, Coulomb field dominates. When q is close
to the shell, the shell feels flat and we can expect an image charge of −q
outside the sphere. Together, these two charges generate a dipole field at
the origin.

In general, the field inside the sphere can be considered as a superposi-
tion of three contributions: (i) charge q, (ii) an image charge outside the
sphere to make the potential on the sphere equals to zero, (iii) a uniform
distribution of charge on the shell to account for the fact that the shell is
not grounded.

b) Because of the axial symmetry, we can use the general expansion in terms
of Legendre polynomials. First assuming the potential on the shell is v0,
for outside of the shell, we have

φ(r) =
∑
n

Bn
rn+1

Pn(cos θ) (7.2)

Applying the boundary condition, it is easy to see that

φ(r) =
v0a

r
(7.3)

Now for the potential inside the sphere,

φ(r) =
1

4πε0

q

|r− d|
+
∑
n

Anr
nPn(cos θ) (7.4)

Here d = dẑ.
Applying the boundary condition we have

v0 =
q

4πε0

∑
n

dn

an+1
Pn(cos θ) +

∑
n

Ana
nPn(cos θ) (7.5)

This tells us

An,n>0 = − q

4πε0

dn

a2n+1
, A0 = v0 −

q

4πε0a
(7.6)

We still have to solve for v0. Using Gaussian theorem on a spherical
surface outside of the shell, we know v0 = q

4πε0a
. That means A0 = 0.
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A non-conducting ring with total mass M and total charge Q is hung with a
string so that the string is normal to the ring surface, and the ring can freely
rotate around the string. The ring has a radius of a and is inside of a long
solenoid. The solenoid has radius r, total of N tightly-wound rounds over its
length of L.

a) If the current through the solenoid changes at a rate of İ, what is the
torque exerted on the ring.

b) When the current through the solenoid slowly increase from 0 to I, what
is the final angular velocity of the ring?

 

 

Figure 1: Schematics of ring in solenoid.
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a) Using Ampere loop, it is easy to derive that the magnetic field inside of a
solenoid is constant, and equals to

B = µ0IN/L (8.1)

If current changes, the EMF generated along the ring equals to (we will
only consider the magnitude from now on)

2πaE = πa2µ0İN/L (8.2)

Therefor the torque equals to

T = QaE =
1

2
a2µ0QİN/L (8.3)

b) From conservation of angular momentum, we can also relate the torque
to change of angular velocity:

Ma2ω̇ =
1

2
a2µ0QİN/L (8.4)

Therefore the final angular velocity equals to 1
2M µ0QIN/L.


