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OSU Physics Department
Comprehensive Examination #127

Solutions

Monday, January 9 and Tuesday, January 10, 2017

Winter 2017 Comprehensive Examination

Quantum Mechanics 9 AM-12 PM Monday, January 9
Statistical Mechanics 1 PM-4 PM Monday, January 9

Electricity and Magnetism 9 AM-12 PM Tuesday, January 10
Clasical Mechanics 1 PM-4 PM Tuesday, January 10

General Instructions

This Winter 2017 Comprehensive Examination consists of four separate parts of
two problems each. Each problem caries equal weight (20 points each) and lasts
three hours. Work carefully, indicate your reasoning, and display your work
clearly. Even if you do not complete a problem, it might be possible to obtain
partial credit—especially if your understanding is manifest. Use no scratch
paper; do all work on the provided pages, work each problem in its own labeled
pages, and be certain that your chosen student letter (but not your name) is on
the header of each page of your exam, including any unused pages. If you need
additional paper for your work, use the blank pages provided. Each page of
work should include the problem number, a page number, your chosen student
letter, and the total number of pages actually used. Be sure to make note of
your student letter for use in the remaining parts of the examination.

If something is omitted from the statement of the problem or you feel there
are ambiguities, please get up and ask your question quietly and privately, so
as not to disturb the others. Put all materials, books, and papers on the floor,
except the exam and the collection of formulas distributed with the exam. Cal-
culators are not allowed except when a numerical answer is required—calculators
will then be provided by the person proctoring the exam. Please staple and re-
turn all pages of your exam—including unused pages—at the end of the exam.

Monday morning Problem 0



Monday morning Problem 1 2

Consider a 1D simple harmonic oscillator, which at t = 0 is in a state given by

|ψ(t = 0)〉 = eikx |0〉 (1.1)

where |0〉 is the ground state of the oscillator.

a) What is the expectation value 〈x〉 at t = 0?

b) What is d〈x〉
dt at t = 0?

Your solution will reflect a connection between quantum and classical mechan-
ics. Provided k is sufficiently large, this wave function will follow a classical
trajectory for quite a while before dispersion takes over. A more thorough ex-
ploration of this behavior is beyond the scope of this exam, but could consist of
relating the time derivative of 〈p〉 to 〈x〉 at all times.

The normalized ground state of a simple harmonic oscillator is given by

φ0(x) =
(mω
π~

) 1
4

e−
mω
2~ x

2

In addition, the following integrals may be useful:∫ ∞
−∞

e−u
2

du =
√
π∫ ∞

−∞
u2e−u

2

du =

√
π

2



Monday morning Solution to problem 1 3

a) The expectation value of x is given by

〈ψ|x |ψ〉 = 〈0| e−ikxxeikx |0〉 (1.2)

= 〈0|x |0〉 (1.3)

= 0 (1.4)

where the last step happened because the integral was odd. Or you could express
x in terms of creation and annihilation operators, in which case it would be zero
because 〈0|1〉 = 0.

b) To find the time derivative, we need to apply the product rule.

d

dt
〈ψ|x |ψ〉 =

d 〈ψ|
dt

x |ψ〉+ 〈ψ|xd |ψ〉
dt

(1.5)

= 〈ψ|xd |ψ〉
dt

+ c.c. (1.6)

= 2< 〈ψ|xd |ψ〉
dt

(1.7)

where “c.c.” means the complex conjugate of the previous bit and < represents
the real part. We now remind ourselves of Schrödinger’s equation

H |ψ〉 = i~
d

dt
|ψ〉 (1.8)

d |ψ〉
dt

=
H |ψ〉
i~

(1.9)

d

dt
〈ψ|x |ψ〉 = 2< 〈ψ|xd |ψ〉

dt
(1.10)

= 2< 1

i~
〈ψ|xH |ψ〉 (1.11)

= 2< 1

i~
〈0| e−ikxxHeikx |0〉 (1.12)

= 2< 1

i~
〈0| e−ikxx

(
− ~2

2m

d2

dx2
+

1

2
mω2x2

)
eikx |0〉 (1.13)

= 2<− ~2

2m

1

i~
〈0| e−ikxx d2

dx2
eikx |0〉+ 2

1

2
mω2< 1

i~
〈0| e−ikxx3eikx |0〉

(1.14)

= 2<− ~2

2m

1

i~
〈0| e−ikxx d2

dx2
eikx |0〉+ 2

1

2
mω2< 1

i~�
���

�:0
〈0|x3 |0〉 (1.15)

= 2<− ~2

2m

1

i~
〈0| e−ikxx d2

dx2
eikx |0〉 (1.16)
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Now let’s take a moment to just apply the second derivative above to our wave
function.

d2

dx2
eikxφ0(x) =

d

dx

(
ikeikxφ0(x) + eikxφ′0(x)

)
(1.17)

= −k2eikxφ0(x) + 2ikeikxφ′0(x) + eikxφ′′0(x) (1.18)

= −k2eikxφ0(x) + 2ikeikxφ′0(x) + eikxφ′′0(x) (1.19)

Now we could evaluate all three terms here, but two of them will vanish when
we stick them into the integral, so let’s do that first.

d

dt
〈ψ|x |ψ〉 = 2<− ~2

2m

1

i~
〈0| e−ikxx d2

dx2
eikx |0〉 (1.20)

= 2<− ~2

2m

1

i~

∫ ∞
−∞

φ0(x)e−ikxx
(
−k2eikxφ0(x) + 2ikeikxφ′0(x) + eikxφ′′0(x)

)
dx

(1.21)

= 2<− ~2

2m

1

i~

∫ ∞
−∞

φ0(x)x

(
���

��:even
−k2φ0(x) + 2ikφ′0(x) +��

�*even
φ′′0(x)

)
dx

(1.22)

= 2<− ~2

2m

2k

~

∫ ∞
−∞

φ0(x)xφ′0(x)dx (1.23)

= 2<− ~k
m

∫ ∞
−∞

φ0(x)x
(
−2

mω

2~
xφ0(x)

)
dx (1.24)

= 2<− ~k
m

∫ ∞
−∞

φ0(x)x
(
−2

mω

2~
xφ0(x)

)
dx (1.25)

= 2<~k
m

∫ ∞
−∞

mω

~
x2
√
mω

π~
e−

mω
~ x2

dx (1.26)

We do a simple u substitution:

u =

√
mω

~
x du =

√
mω

~
dx (1.27)

d

dt
〈ψ|x |ψ〉 = 2

~k
m

1√
π

∫ ∞
−∞

u2e−u
2

du (1.28)

= 2
~k
m

1√
π

√
π

2
(1.29)

=
~k
m

(1.30)

In other words, ~k is the momentum, and p = mv.
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Consider a particle in a 2D infinite well with side length L. This well has a
potential given in the following figure

where the point (x0, y0) is defined to be the center of the box (you may choose
your own coordinate system). You may further assume that

ε� ~2

mL2

What are the energies of the lowest 3 eigenstates?
Your final answer may contain a dimensionless definite integral that is inde-

pendent of any physical parameters, and is non-zero.
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To solve for the lowest 3 eigenstates, we will use perturbation theory, since we

know that εl ~2

mL2 . The first three unperturbed eigenstates are given by

ψ11 = A11 cos
(πx
L

)
cos
(πy
L

)
(2.1)

ψ12 = A21 cos
(πx
L

)
sin

(
2πy

L

)
(2.2)

ψ21 = A21 sin

(
2πx

L

)
cos
(πy
L

)
(2.3)

where we choose to put the origin in the center of the box. These are the
longest-wavelength modes that satisfy our boundary conditions that the wave-
function must go to zero at the edges of the box. A11 and A12 are normalization
constants. The unperturbed energies of these states are

E
(0)
11 =

~2

2m

(
π2

L2
+
π2

L2

)
(2.4)

=
~2π2

mL2
(2.5)

E
(0)
21 = E

(0)
12 (2.6)

=
~2

2m

(
π2

L2
+

22π2

L2

)
(2.7)

=
5

2

~2π2

mL2
(2.8)

=
5

2
E11 (2.9)

Now we need to find the shift in energy due to the saddle-point perturbation.
The first one is easy because it is non-degenerate, but the second two states are
degenerate so we’ll have to apply degenerate perturbation theory.

E11 = E
(0)
11 +

���
���

��:0〈
ψ11

∣∣∣εxy
L2

∣∣∣ψ11

〉
(2.10)

= E
(0)
11 (2.11)

The integral is odd... twice-odd actually, and thus comes out to zero. So our
ground state energy is unshifted to first order.

The same logic applies to the diagonal matrix elements:〈
ψ21

∣∣∣εxy
L2

∣∣∣ψ21

〉
= 0 (2.12)〈

ψ12

∣∣∣εxy
L2

∣∣∣ψ12

〉
= 0 (2.13)

Therefore, if we were not using degenerate perturbation theory, we would con-
clude that our perturbation has no effect to first order. However, the first two
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excited states are degenerate, so we need to ask about the nondiagonal matrix
element.〈
ψ21

∣∣∣εxy
L2

∣∣∣ψ12

〉
=
εA2

21

L2

∫ L/2

−L/2
dx

∫ L/2

−L/2
dy cos

(πx
L

)
sin

(
2πy

L

)
xy sin

(
2πx

L

)
cos
(πy
L

)
(2.14)

=
εA2

21

L2

∫ L/2

−L/2
dx

∫ L/2

−L/2
dy x cos

(πx
L

)
sin

(
2πx

L

)
y cos

(πy
L

)
sin

(
2πy

L

)
(2.15)

=
ε

L2

(
A21

∫ L/2

−L/2
dxx cos

(πx
L

)
sin

(
2πx

L

))2

(2.16)

At this point we have a solution that is in terms of a single definite integral,
but that integral still contains physical terms. We can remove them with a
substitution.

u =
πx

L
du = π

dx

L
(2.17)

〈
ψ21

∣∣∣εxy
L2

∣∣∣ψ12

〉
= εL2A2

21

(
1

π2

∫ π/2

−π/2
duu cosu sin (2u)

)2

(2.18)

Now the integral is a pure dimensionless number that is independent of the
parameters of our problem (notably length). Unfortunately, we still have the
normalization factor annoying us, and making it potentially unclear as to how
our energy shift will depend on the size of the box. To address this (which we
could do later), let us normalize the wave functions.

1 = A2
21

∫ L/2

−L/2
dx

∫ L/2

−L/2
dy cos2

(πx
L

)
sin2

(
2πy

L

)
(2.19)

= A2
21

L

2

L

2
(2.20)

A21 =
2

L
(2.21)

In the first step, I used the fact that the average value of a square of a sinusoid
is 1

2 . You can solve for this by recognizing that the sum of the squares of sine
and cosine must be 1, which means that their averages must be 1

2 , provided you
average over a half-integer number of wavelengths.
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With this normalization in hand, we find that

〈
ψ21

∣∣∣εxy
L2

∣∣∣ψ12

〉
=
ε

4

(
1

π2

∫ π/2

−π/2
duu cosu sin (2u)

)2

(2.22)

=
ε

4
I (2.23)

I ≡

(
1

π2

∫ π/2

−π/2
duu cosu sin (2u)

)2

(2.24)

Okay, now for some degenerate perturbation theory. We have a perturbation
Hamiltonian that in our degenerate subspace looks like

H =

[
0 ε

4I
ε
4I 0

]
(2.25)

The eigenstates of this Hamiltonian are clear by inspection:

ψ± =
ψ21 ± ψ12√

2
(2.26)

and their eigenvalues are

E± = ± ε
4
I (2.27)

You can check these by multiplying the above matrix by

[
1
1

]
and

[
1
−1

]
.

Our three lowest energies thus come out to:

E11 =
~2π2

mL2
(2.28)

E− =
5

2

~2π2

mL2
− ε

4
I (2.29)

E+ =
5

2

~2π2

mL2
+
ε

4
I (2.30)

where the dimensionless integral I is given above.



Monday afternoon Problem 3 9

A gas initially at a pressure Pi, temperature Ti, and volume Vi is forced through
a porous plug into another chamber, maintained at pressure Pf < Pi, as shown
in the figure below. Pi and Pf are kept constant, and all chambers and the plug
are insulated, ∆Q = 0, for the process. Assume that the process is slow enough
to maintain uniform temperature and pressure in each chamber.

�������� ��� ���

������ 	�
��

��������

a) Show that the initial state enthalpy Hi = Ui +PiVi is same with the final
state enthalpy Hf = Uf +PfVf , where Ui and Uf are the initial and final
state internal energies. This means that the throttling process takes place
at constant enthalpy.

b) A differential change in H with T and P as independent variables can be
expressed as

dH = CpdT +

[
V − T

(
∂V

∂T

)
P

]
dP.

Using this relation, show that(
∂T

∂P

)
H

= 0

for an ideal gas with the equation of state PV = RT for one mole where
R = NkB . Based on this result, find the relation between the initial
temperature Ti and the final temperature Tf . What is the work done by
the ideal gas during the process?

c) In general, the coefficient
(
∂T
∂P

)
H

does not vanish for an interacting gas.
We consider the van der Waals equation of state written for one mole of
substance, (

P +
a

V 2

)
(V − b) = RT,

where a � RTV and b � V are characteristic constants for a given
substance. Find the coefficient

(
∂T
∂P

)
H

. Using the result and assuming

Cp = 5
2R, show that the gas cools down when the initial temperature Ti

is lower than 2a
bR .
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A gas initially at a pressure Pi, temperature Ti, and volume Vi is forced through
a porous plug into another chamber, maintained at pressure Pf < Pi, as shown
in the figure below. Pi and Pf are kept constant, and all chambers and the plug
are insulated, ∆Q = 0, for the process. Assume that the process is slow enough
to maintain uniform temperature and pressure in each chamber.

�������� ��� ���

������ 	�
��

��������

a) Show that the initial state enthalpy Hi = Ui +PiVi is same with the final
state enthalpy Hf = Uf +PfVf , where Ui and Uf are the initial and final
state internal energies. This means that the throttling process takes place
at constant enthalpy.

Solution: .
The net work driven by the gas is

∆W =

∫ Vf

0

PfdVf +

∫ 0

Vi

PidVi = PfVf − PiVi

Since ∆Q = 0,

∆U = −∆W ⇒ Uf − Ui = PiVi − PfVf ⇒ Ui + PiVi = Uf + PfVf .

b) A differential change in H with T and P as independent variables can be
expressed as

dH = CpdT +

[
V − T

(
∂V

∂T

)
P

]
dP.

Using this relation, show that(
∂T

∂P

)
H

= 0

for an ideal gas with the equation of state PV = RT for one mole where
R = NkB . Based on this result, find the relation between the initial
temperature Ti and the final temperature Tf . What is the work done by
the ideal gas during the process?
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Solution: .
When dH = 0,

CpdT =

[
T

(
∂V

∂T

)
P

− V
]
dP ⇒

(
∂T

∂P

)
H

=
1

CP

[
T

(
∂V

∂T

)
P

− V
]

For an ideal gas,

PV = RT ⇒ P

(
∂V

∂T

)
P

= R⇒ T

(
∂V

∂T

)
P

=
RT

P
= V

Therefore,(
∂T

∂P

)
H

=
1

CP

[
T

(
∂V

∂T

)
P

− V
]

=
1

CP
[V − V ] = 0

This means that there is no temperature change during the process, i.e.,
Tf = Ti.

Since Ti = Tf , PiVi = PfVf , thus ∆W = PiVi − PfVf = 0. There is no
work done by the ideal gas during the process.

c) In general, the coefficient
(
∂T
∂P

)
H

does not vanish for an interacting gas.
We consider the van der Waals equation of state written for one mole of
substance, (

P +
a

V 2

)
(V − b) = RT,

where a � RTV and b � V are characteristic constants for a given
substance. Find the coefficient

(
∂T
∂P

)
H

. Using the result and assuming

Cp = 5
2R, show that the gas cools down when the initial temperature Ti

is lower than 2a
bR .

Solution: .
Since a� RTV and b� V , the equation of state reduces to

PV
(

1 +
a

RTV

)(
1− b

V

)
∼= RT ⇒ PV

(
1 +

a

RTV
− b

V

)
∼= RT

⇒ PV +
P

RT
a− Pb = RT ⇒ PV = −P

( a

RT
− b
)

+RT

⇒ V = b− a

RT
+
RT

P
,

and, then, (
∂V

∂T

)
P

=
R

P
+

a

RT 2
.

Therefore,using the equation in (b), we obtain(
∂T

∂P

)
H

=
1

5R/2

[
T

(
R

P
+

a

RT 2

)
−
(
b− a

RT
+
RT

P

)]
=

2

5R

(
2a

RT
− b
)
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This equation tells us that (
∂T

∂P

)
H

> 0

for T < 2a
bR . This means that the pressure drop (∆P = Pf − Pi < 0)

induces cooling (∆T = Tf − Ti < 0) during the throttling process at low
temperature T < 2a

bR .
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A quantum thermometer modeled as a microscopic LC circuit measures the
thermal noise of the voltage across an inductor and capacitor in parallel.

�

� � �

In terms of the charge Q on the capacitor, the Hamiltonian governing oscillations
is

H =
1

2
LI2 +

1

2C
Q2 =

1

2
L

(
dQ

dt

)2

+
1

2C
Q2

and the oscillation frequency is ω = 1/
√
LC. The circuit is attached to a thermal

reservoir of temperature T .

a) The LC circuit has discrete energy levels. Write down its energy eigenval-
ues. What is the average energy of the circuit in thermal equilibrium at
T?

b) What are the average energies stored in the capacitor and in the inductor?

c) Find the rms noise voltage
〈
V 2
〉1/2

and the rms noise current
〈
I2
〉1/2

.

Obtain the expressions for
〈
V 2
〉1/2

in the classical limit (kBT � ~ω) and
in the quantum limit (kBT � ~ω).
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A quantum thermometer modeled as a microscopic LC circuit measures the
thermal noise of the voltage across an inductor and capacitor in parallel.

�

� � �

In terms of the charge Q on the capacitor, the Hamiltonian governing oscillations
is

H =
1

2
LI2 +

1

2C
Q2 =

1

2
L

(
dQ

dt

)2

+
1

2C
Q2

and the oscillation frequency is ω = 1/
√
LC. The circuit is attached to a thermal

reservoir of temperature T .

a) The LC circuit has discrete energy levels. Write down its energy eigenval-
ues. What is the average energy of the circuit in thermal equilibrium at
T?

Solution: .
The LC circuit is a simple harmonic oscillator with the resonance fre-
quency ω. Thus the energy eigenvalues are

En =

(
n+

1

2

)
~ω, n = 0, 1, 2, · · · .

The average energy in the circuit is

U = 〈E〉 =

∑∞
n=0Ene

−En/kBT∑∞
n=0 e

−En/kBT
= − 1

Z

∂Z

∂β
,

where Z =
∑∞
n=0 e

−En/kBT and β = 1/kBT . Since

Z = e−β~ω/2
∞∑
n=0

e−nβ~ω =
e−β~ω/2

1− e−β~ω
=

1

eβ~ω/2 − e−β~ω/2
=

1

2 sinh
(

~ω
2kBT

) ,

U =
1

2
~ω

cosh
(

~ω
2kBT

)
sinh

(
~ω

2kBT

) =
1

2
~ω coth

(
~ω

2kBT

)

b) What are the average energies stored in the capacitor and in the inductor?
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Solution: .
In a simple harmonic oscillator, the two components have same average
energy: 〈

1

2
LI2

〉
=

〈
1

2
CV 2

〉
=
U

2
=

1

4
~ω coth

(
~ω

2kBT

)
c) Find the rms noise voltage

〈
V 2
〉1/2

and the rms noise current
〈
I2
〉1/2

.

Obtain the expressions for
〈
V 2
〉1/2

in the classical limit (kBT � ~ω) and
in the quantum limit (kBT � ~ω).

Solution: .
Using the average energies stored in the capacitor and the inductor, we
get 〈

1

2
CV 2

〉
=
U

2
⇒
〈
V 2
〉

=
U

C
⇒
〈
V 2
〉1/2

=

√
U

C

and 〈
1

2
LI2

〉
=
U

2
⇒
〈
I2
〉

=
U

I
⇒
〈
I2
〉1/2

=

√
U

I

In the classical limit (kBT � ~ω),

U =
1

2
~ω coth

(
~ω

2kBT

)
∼=

1

2
~ω

1
~ω

2kBT

= kBT

Thus 〈
V 2
〉1/2 ∼= √kBT

C
.

In the quantum limit (kBT � ~ω),

U =
1

2
~ω coth

(
~ω

2kBT

)
∼=

1

2
~ω

Thus 〈
V 2
〉1/2 ∼= √ ~ω

2C
.



A spherical shell of radius a is uniformly charged with a total charge Q. However, when taking a 
close look, one finds that there are two holes in the north and south poles with the same size as 
shown in the figure below. Using the coordinate system indicated in the figure, 

 

(1) What is the electric field on the z axis and at 𝑧𝑧 ≫ 𝑎𝑎 ? (keep terms up to the leading 

terms in 𝑏𝑏
𝑎𝑎

) 
(2) What is the electric field on the z axis just outside of the sphere, ( 𝑎𝑎 < 𝑧𝑧 and 𝑧𝑧 − 𝑎𝑎 ≪  𝑏𝑏 , 

keep the leading terms in 𝑏𝑏
𝑎𝑎

 ) 
 

(3) What is the electric field on the z axis just inside of the sphere, ( 𝑎𝑎 > 𝑧𝑧 and 𝑎𝑎 − 𝑧𝑧 ≪  𝑏𝑏 , 
keep the leading terms in in 𝑏𝑏

𝑎𝑎
 ) 

(4) Sketch the potential along the z axis from -∞ to +∞. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑧𝑧 

𝑦𝑦 

𝑏𝑏 ≪ 𝑎𝑎 

𝑎𝑎 

Tuesday morning Problem 5 16

.
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Keeping up to the linear terms, the charge density is

ρ =
Q

4πa2 − πb2

2

(5.1)

We should consider the holey sphere as a full sphere with charge density ρ
plus two patches that are charged with −ρ. The E field and potential of the full
sphere is a familiar result, the two patches can be approximated as either point
charges or infinite planes in problem (1) to (3). For simplicity, we will assume
Q > 0.

(1) Amplitude E of the electric field is

E ≈ 1

4πε0

4πa2ρ

z2
− 1

4πε0

πb2ρ

4(z + a)2
− 1

4πε0

πb2ρ

4(z − a)2
(5.2)

This is sufficient but if we continue take leading terms this can be further sim-
plified

E ≈ Q

4πε0
[

1

z2
(1 +

b2

8a2
)− b2

16a2
(

1

(z + a)2
+

1

(z − a)2
)] (5.3)

(2) Similar as in (1), except that now one of the patch should be considered
as an infinitely large plane, therefore we have

E ≈ 1

4πε0

4πa2ρ

z2
− 1

4πε0

πb2ρ

4(z + a)2
− ρ

2ε0
(5.4)

(3) Similar as in (2) except that the direction of the E field from the nearby
patch changes direction, therefore we have

E ≈ 1

4πε0

4πa2ρ

z2
− 1

4πε0

πb2ρ

4(z + a)2
+

ρ

2ε0
(5.5)

(4) Key points: the potential profile is symmetric; the potential slope is discon-
tinuous at z = a and z = −a, namely kinks; the potential decays as 1/z far from
the origin; the potential has a local maximum (between z = −a and z = a) at
z = 0.



A cylindrical conducting wire of length 𝐿𝐿 and conductance 𝜎𝜎1 is uniformly coated with another 
layer with conductance 𝜎𝜎2. The radius of the inner layer is 𝑎𝑎1 and the radius of the outer layer is 
𝑎𝑎2. 

Assuming both layers have the same dielectric constant 𝜀𝜀 and their magnetic permeabilities are 
𝜇𝜇1and 𝜇𝜇2.  

(1) If the wire is connected to a DC voltage source of 𝑉𝑉0, what are the electric, magnetic and 
Poynting vector everywhere in the wire? 

(2) If the wire is connected to a AC voltage source of 𝑉𝑉0cos (𝜔𝜔𝜔𝜔), what are the electric, 
magnetic, and Poynting vector everywhere in the wire? Assuming that the frequency 𝜔𝜔 
is very small such that conductivity, electric and magnetic permeability stay the same as 
the DC case. 
 

You can assume that the current is uniform in each of the two layers, neglect boundary effects.  
 
 

 
 

 

 
 
 

𝑎𝑎1 
𝑎𝑎2 

𝐿𝐿 

𝑉𝑉 

𝜎𝜎1, 𝜇𝜇1, 𝜀𝜀 

𝜎𝜎2, 𝜇𝜇2, 𝜀𝜀 
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An elastic collision occurs in free space, with no gravitational forces to be considered.  A 
point particle of mass m is incident upon a dumbbell (a system of two point masses, each of 
mass m, connected by a rigid, massless rod of length L).  The dumbbell is initially at rest.  
The incident particle has velocity 

!v = vx̂  and it makes a head-on collision with one of the 
masses as depicted below: 

 
 

 
(a) What conservation laws are applicable (and why)? 
(b) Find in terms of the known quantities v, L and m 

• the magnitude and direction of the velocity of the incident particle after the collision,  
• the magnitude and direction of the velocity of the dumbbell's center of mass, and  
• the magnitude and direction of the angular velocity of the dumbbell. 

(c) Qualitatively describe the motion of the three particles after the collision.  
 
 

  

	  

	  

	  
m 

m 

m 

v 

L 

x 

y 
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SOLUTION  
An elastic collision occurs in free space, with no gravitational forces to be considered.  A 
point particle of mass m is incident upon a dumbbell (a system of two point masses, each of 
mass m, connected by a rigid, massless rod of length L).  The dumbbell is initially at rest.  
The incident particle has velocity 

!v = vx̂  and it makes a head-on collision with one of the 
masses.  
 
Initial (y into page for right-handed system): Final: 
 

 
 

 
(a) What conservation laws are applicable (and why)? 

(i) Conservation of linear momentum because there are no external forces. 
(ii) Conservation of angular momentum because there are no external torques. 
(iii) Conservation of kinetic energy because the collision is elastic. 
 

(d) Use the conservation laws to find the magnitude and direction of the velocity of the incident 
particle after the collision, the magnitude and direction of the velocity of the dumbbell's 
center of mass, and the magnitude and direction of the angular velocity of the dumbbell in 
terms of the known quantities v, L and m. 
 
Conservation of linear momentum: 
 m
!v = m!v1 + 2m

!vcm   (1) 
where  

!v1  is the velocity of the incident mass after the collision and  
!vcm  is the velocity of the 

center of mass of the dumbbell after the collision.  There is a head-on collision between the 
two masses, and the internal forces in such a collision are exclusively in the x direction, so 
the change in momentum of each mass can be only in the x direction at the instant of 
collision.  Thus mass #1 (the single mass) moves in the x direction after the collision as does 
the center of mass of the dumbbell.   
v = v1 + 2mvcm   (2) 
(v is known, v1 and vcm are to be determined) 
 
(ii) Conservation of angular momentum (about an axis perpendicular to page and through 
center of mass of dumbbell):  

 

mvx̂ × L
2
ẑ = mv1x̂ ×

L
2
ẑ

L  of particle #1
! "# $#

+ 2m vcmx̂( )× 0
L  of center of mass
! "## $##

+ Iω ŷ
L  about center of mass
%   (3) 

	  

	  

	  
m 

m 

m 

v 

L 

x 

z 

	  

	  

	  v1 

ω 

vcm 

x 

z 
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with I the moment of inertia and ω the angular velocity of the dumbbell about the same axis: 

I = m L
2

⎛
⎝⎜

⎞
⎠⎟
2

+m L
2

⎛
⎝⎜

⎞
⎠⎟
2

= mL
2

2
 (4) 

Combining (3) and (4) 
mvL
2

= mv1L
2

+ mL
2ω
2

⇒ v = v1 + Lω  (5) 

(v and L are known, v1 and ω are to be determined) 
 
(iii) Conservation of kinetic energy: 
1
2
mv2 = 1

2
mv1

2 + 1
2
2mvcm

2 + 1
2
Iω 2      (6) 

and using (4) and some clean-up 

v2 = v1
2 + 2vcm

2 + L
2

2
ω 2     (7) 

(v and L are known, v1 , vcm and ω are to be determined) 
 
Now solve (2), (5) and (7) for the 3 unknowns v1, vcm and ω. 
 
(2) gives         v = v1 + 2vcm ⇒ v − v1 = 2vcm   (8) 
(5) gives         v = v1 + Lω ⇒ v − v1 = Lω   (9) 

(8) and (9) give               ω = 2vcm
L

 (10) 

Kinetic energy (7)  along with (10) for ω gives 

v2 − v1
2 = 2vcm

2 + L
2

2
2vcm
L

⎛
⎝⎜

⎞
⎠⎟
2

= 2vcm
2 + 2vcm

2 = 4vcm
2  (11) 

Now take (11) v − v1( ) v + v1( ) = 4vcm2  and (8) v − v1 = 2vcm  

to get v + v1( ) = 2vcm  (12) 
(8) says v − v1 = 2vcm  
Adding and subtracting (12) and (8) 

vcm = v
2
; v1 = 0  

and putting into (10) gives  ω = 2vcm
L

= v
L

 

 
(c) So mass #1 m hits the dumbbell and stops.   

The dumbbell picks up all the linear momentum in the x direction, and since it has mass 2m, 
the center of mass moves with velocity v/2 in the x direction. The two dumbbell masses 

rotate about the axis perpendicular to the xz plane with angular velocity 
 

!
ω = v

L
ŷ  

(clockwise as viewed from our vantage point).  
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A double pendulum is made from a string and two masses. The string is attached to the ceiling 
and has length 2L. A mass m1 = m is attached in the middle of the string and a mass m2 = m is 
attached at the end. The usual assumptions are applicable to make the problem tractable: the 
string is massless and cannot be stretched. The masses are point-like.  There is no dissipation. 
Only small-displacement motion from equilibrium is to be considered.   
Let g be the acceleration due to gravity and define ω 0 = g L . 

 
 
 
(a) Show that the small-displacement motion of the masses is given by: 

x1 t( ) = Acos ω at +ϕa( ) + Bcos ωbt +ϕb( )
x2 t( ) = 1+ 2( )Acos ω at +ϕa( ) + 1− 2( )Bcos ωbt +ϕa( )

 

where A, B, ϕa, ϕb are arbitrary constants.  Find the frequencies ωa and ωb. 
 

(b) Pick one of the following initial conditions and comment on the motion: 
i( ) x2 0( ) = 1+ 2( )x1 0( ); v1 0( ) = v2 0( ) = 0
ii( ) x2 0( ) = 1− 2( )x1 0( ); v1 0( ) = v2 0( ) = 0

 

 
 
  

	  

	   m 

m 

L 

x 

y 

L 
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SOULTION 
  

                 
(a) Show that the small-displacement motion of the masses is given by:  

x1 t( ) = Acos ω at +ϕa( ) + Bcos ωbt +ϕb( )
x2 t( ) = 1+ 2( )Acos ω at +ϕa( ) + 1− 2( )Bcos ωbt +ϕa( )

  

where A, B, ϕa, ϕb are arbitrary constants.  Find the frequencies ωa and ωb.  
 
Coordinates are defined in the figure above. 
• Relate xi and angles for small displacements: 

 x1
L
= sinθ1 ≈θ1 ⇒ x1 ≈ Lθ1  and x2 − x1

L
= sinθ2 ≈θ2 ⇒ x2 ≈ x1 + Lθ2  

• Small angle approximations:  sinθ ≈θ; cosθ ≈1− θ
2

2
;  

motion approximately in x direction only so y ≈ constant  !y ≈ small; !!y ≈ 0  
 
Lagrangian method 
Kinetic energy ( !y

2 ≈ 0 is second order so neglect) 

 
K ≈ 1

2
m!x1

2 + 1
2
m!x2

2   (1') 

Potential energy 
V = mgL 1− cosθ1( ) +mgL 1− cosθ1 +1− cosθ2( )

V ≈ mgL
2

θ1
2 + mgL

2
θ1
2 +θ2

2( ) = 2mg2L x1
2 + mgL

2
x2 − x1
L

⎛
⎝⎜

⎞
⎠⎟
2

V ≈ 2mg
2L

x1
2 + mg
2L

x2
2 − 2x1x2 + x1

2( ) = mg2L 3x1
2 − 2x1x2 + x2

2( )

 (2') 

Lagrangian 

 
L = K −V = 1

2
m!x1

2 + 1
2
m!x2

2 − mg
2L

3x1
2 − 2x1x2 + x2

2( )  (3') 

Equations of motion 

	  

	   m 

m 

L 

x 

y 

L 

	  

	  

	  
m: (x1,y1) 

m: (x2,y2) 

x 

y θ
1
 

θ
2
 

T1 

T2 

mg 

T2 

mg 
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!p1 =
∂L
∂x1

= − mg
L

3x1 − x2( ) = m!!x1

!p2 =
∂L
∂x2

= − mg
L

−x1 + x2( ) = m!!x2
 (4') 

Rearrange (4) and define ω 0
2 = g L  to get 

 

!!x1 +ω 0
2 3x1 − x2( ) = 0

!!x2 +ω 0
2 x2 − x1( ) = 0

 (5') 

 
 
Newton's law method 
• Forces: 

 
m!!x1 = −T1 sinθ1 +T2 sinθ2 ≈ −T1θ1 +T2θ2 = −T1

x1
L
+T2

x2 − x1
L

= − T1 +T2( ) x1
L
+T2

x2
L

 (1) 

 m!!y1 = mg −T1 cosθ1 +T2 cosθ2 ≈ mg −T1 +T2  (2) 

 
m!!x2 = −T2 sinθ2 ≈ −T2θ2 = −T2

x2 − x1
L

 (3) 

 m!!y2 = mg −T2 cosθ2 ≈ mg −T2  (4) 
 
(4) with  !!y2 = 0  gives T2 = mg  (5) 
(2) with  !!y1 = 0 and (5) gives T1 = T2 +mg⇒ T1 = 2mg  (6) 

(1), (5), (6) give  
 
!!x1 = − 3g

L
x1 +

g
L
x2  (7) 

(3), (5), (6) give  
 
!!x2 = − g

L
x2 − x1( )  (8) 

Rearrange (7), (8) and define ω 0
2 = g L  

 

!!x1 +ω 0
2 3x1 − x2( ) = 0

!!x2 +ω 0
2 x2 − x1( ) = 0

 (10) 

which is the same as (5') 
 
Normal mode solutions: We seek solutions where both masses oscillate with the same 
frequency. Using a complex coefficient Ai,  

 

xi t( ) = Aieiωt
!!xi = −ω 2xi

  (11) 

Recast (10) as 
 

3ω 0
2 −ω 2 −ω 0

2

−ω 0
2 ω 0

2 −ω 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x1
x2

⎛

⎝
⎜

⎞

⎠
⎟ = 0  (12) 

Set the determinant of the matrix equal to zero to find the eigenvalues. 
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3ω 0
2 −ω 2 −ω 0

2

−ω 0
2 ω 0

2 −ω 2
= 0                                 

3ω 0
2 −ω 2( ) ω 0

2 −ω 2( )−ω 0
4 = 0

2ω 0
4 − 4ω 0

2ω 2 +ω 4 = 0   

ω 2

ω 0
2 =

4 ± 16 − 8
2

= 2 ± 2  
There are two normal mode frequencies 

 
ω a

2 = 2 − 2( )ω 0
2

ωb
2 = 2 + 2( )ω 0

2  (13) 

 
The first eigenvector is, with eigenvalue  
ω 2 =ωb

2 = 2 + 2( )ω 0
2
  

3ω 0
2 − 2 + 2( )ω 0

2 −ω 0
2

−ω 0
2 ω 0

2 − 2 + 2( )ω 0
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x1
x2

⎛

⎝
⎜

⎞

⎠
⎟ = 0  

1− 2 −1
−1 −1− 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x1
x2

⎛

⎝
⎜

⎞

⎠
⎟ = 0  

 

Either of the 2 equations gives x1,b =
x2,b
1− 2

 ,  (14) 

so in normal mode b the oscillations are 
x1,b t( ) = Bcos ωbt +ϕb( )
x2,b t( ) = 1− 2( )Bcos ωbt +ϕb( )

 where B and ϕb are arbitrary constants. (15) 

 
The second eigenvector is, with eigenvalue  
ω 2 =ω a

2 = 2 − 2( )ω 0
2
  

3ω 0
2 − 2 − 2( )ω 0

2 −ω 0
2

−ω 0
2 ω 0

2 − 2 − 2( )ω 0
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x1
x2

⎛

⎝
⎜

⎞

⎠
⎟ = 0  

1+ 2 −1
−1 −1+ 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x1
x2

⎛

⎝
⎜

⎞

⎠
⎟ = 0  
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Either of the 2 equations gives x1,a =
x2,a
1+ 2

 ,  (16) 

so in normal mode a the oscillations are 
x1,a t( ) = Acos ω at +ϕa( )
x2,a t( ) = 1+ 2( )Acos ω at +ϕa( )

 where A and ϕa are arbitrary constants (17) 

 
The general motion of either mass is the sum of its normal mode motions with appropriate 
coefficients.  That is, the sum of (15) and (17), which gives the desired result: 
 
x1 t( ) = Acos ω at +ϕa( ) + Bcos ωbt +ϕb( )
x2 t( ) = 1+ 2( )Acos ω at +ϕa( ) + 1− 2( )Bcos ωbt +ϕa( )

 (18) 

 
 

(b) Explore the following initial conditions and comment on the motion: 
From the equations of motion: 
x1 0( ) = Acos ϕa( ) + Bcos ϕb( )
x2 0( ) = 2 +1( )Acos ϕa( )− 2 −1( )Bcos ϕb( )
v1 0( ) = −ω aAsin ϕa( )−ωbBsin ϕb( )
v2 0( ) = −ω a 2 +1( )Asin ϕa( ) +ωb 2 −1( )Bsin ϕb( )

 

 
(i) From the initial conditions: 
x2 0( ) = 2 +1( )x1 0( )⇒

2 +1( )Acos ϕa( )− 2 −1( )Bcos ϕb( ) = 2 +1( )Acos ϕa( ) + 2 +1( )Bcos ϕb( )
⇒ B = 0 cannot be true that − 2 −1( ) = 2 +1( )

 

v1 0( ) = 0 (with B = 0)

v1 0( ) = −ω aAsin ϕa( ) = 0 ⇒ϕa = 0 for A ≠ 0
 

x1 t( ) = Acos ω at( )
x2 t( ) = 2 +1( )Acos ω at( )  

  symmetric mode; masses oscillate in phase with frequency ωa.  
 

(ii) From the initial conditions: 
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x2 0( ) = − 2 −1( )x1 0( )⇒
2 +1( )Acos ϕa( )− 2 −1( )Bcos ϕb( ) = − 2 −1( )Acos ϕa( )− 2 −1( )Bcos ϕb( )

⇒ A = 0 cannot be true that 2 +1= − 2 −1( )( )
 

v2 0( ) = 0 (with A = 0)

v2 0( ) = −ωbBsin ϕb( ) = 0 ⇒ϕb = 0 for B ≠ 0
 

x1 t( ) = Bcos ωbt( )
x2 t( ) = − 2 −1( )Bcos ωbt( )

  

antisymmetric mode; masses oscillate in antiphase with frequency ωb.  
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