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OSU Physics Department

Comprehensive Examination #125

Monday, March 28 & Tuesday, March 29

Spring 2016 Comprehensive Examination

PART 1, 2, 3 & 4

General Instructions

This Spring 2016 Comprehensive Examination consists of four separate parts of two problems
each. Each problem caries equal weight (20 points each). The first part (Quantum Mechanics) is
handed out at 9:00 am on Monday, March 28 , and lasts three hours. The second part (Electricity
and Magnetism) will be handed out at 1:00 pm on the same day and will also last three hours.
The third (Statistical Mechanics) and fourth (Classical Mechanics) parts will be administered on
Tuesday, March 29, at 9:00 am and 1:00 pm, respectively. Work carefully, indicate your reasoning,
and display your work clearly. Even if you do not complete a problem, it might be possible to
obtain partial credit—especially if your understanding is manifest. Use no scratch paper; do all
work in the bluebooks, work each problem in its own numbered bluebook, and be certain that your
chosen student letter (but not your name) is inside the back cover of every booklet. Be sure to
make note of your student letter for use in the remaining parts of the examination.

If something is omitted from the statement of the problem or you feel there are ambiguities,
please get up and ask your question quietly and privately, so as not to disturb the others. Put
all materials, books, and papers on the floor, except the exam, bluebooks and the collection of
formulas and data distributed with the exam. Calculators are not allowed except when a numerical
answer is required—calculators will then be provided by the person proctoring the exam. Use the
last pages of your bluebooks for “scratch” work, separated by at least one empty page from your
solutions. “Scratch” work will not be graded.

If you submit blue books for any given section, that section will be graded as part of your
cumulative score. Unless you are taking the exam for practice, all sections not previously passed
need to be attempted and submitted.



Problem 1 Monday morning 2

A beam of neutral particles with spin 1
2 , and no other angular momentum, travels in the y-direction

(horizontal in the figure above). The beam passes through two Stern-Gerlach (SG) magnets. A SG
magnet is a device that allows particles to pass only if they have a particular spin state. In this
case, both SG magnets allow passage of particles with spin projection up along the z-axis (vertical
in the figure above).

Between the SG magnets, there is a uniform magnetic field B0 in the x-direction (perpendicular
to the propagation direction and perpendicular to the SG analyzer magnets).

(a) First explain qualitatively: what are the results of measurement after SG2 when there is
no field at all between SG1 and SG2, and how does the application of the B field in the
x-direction affect the results? What is the underlying physics?

Now be quantitative. The particles travel at speed vo in the y-direction and the SG magnets
are a distance `0 apart. The gyromagnetic ratio is γ so that the magnetic moment is ~µ = γ~S.
The spin matrices are:

Sz = ~
2

(
1 0
0 −1

)
;Sx = ~

2

(
0 1
1 0

)
;Sy = ~

2

(
0 −i
i 0

)
(b) Find the energy eigenvalues and eigenstates in the region between the SG analyzers.

(c) Find the state of the particles (i) immediately after passing through SG 1 and (ii) immediately
before passing through SG 2.

(d) Find a value of `0 (in terms of the other parameters given in statement of the problem) that
results in a 25% probability that particles that have passed through SG 1 also pass though
SG2.







Problem 2 Monday morning 4

The Zeeman effect is the shift in the energy of electron states of an atom as a consequence of the
application of an applied external magnetic field. Use the hydrogen atom as an example and let
the applied external field be ~B . For an electron with orbital and spin angular momentum ~L and
~S, the magnetic dipole moment is

~µ =
e~
2m

(
~L+ 2~S

)
.

Assume a strong-field limit in which the Zeeman effect is small compared to the Coulomb energy
of the hydrogen atom levels, but dominates all other corrections.

(a) In this strong-field limit, calculate the Zeeman correction to the H atom levels for the 1s, 2p
and 3d states as follows:
(i) Explicitly enumerate the relevant quantum numbers that identify the states in the appro-
priate basis.
(ii) Perform the calculation, explicitly addressing the energy degeneracy and its role in the
calculation.
(iii) Sketch a graph of energy as a function of B that illustrates how the levels evolve and to
what extent the degeneracy is lifted by the field.

(b) If the applied field is zero or weak, other important effects dominate the corrections to the
Coulomb energy. List the most important effects with a very brief physical description. Make
an order of magnitude estimate of the size of the applied magnetic field at which the Zeeman
energy becomes important. How big is that field on a laboratory scale?

Possibly helpful numerical constants (2 significant digits)
electron mass: me = 9.1× 10−31 kg
elementary charge: e = 1.6× 10−19 C
Planck’s constant: h = 6.6× 10−34 J · s
speed of light: c = 3.0× 108 m/s



Comprehensive Exam, Spring 2016 QM (Solution)  
(a) (i)  The perturbation Hamiltonian involves the z-components of angular momentum (see (ii)) 
so the appropriate basis is n,ℓ,mℓ, s,ms which specifies those via the m quantum numbers. 
Suppress s because s = ½ always -> n,ℓ,mℓ,ms .  (Do not introduce proton spin because the 
hyperfine effects are too small.)  
 
1s: 1,0,0, 1

2 ; 1,0,0, 1
2  degeneracy 2 

2p: 2,1,1, 1
2 ; 2,1,1, 1

2 ; 2,1,0, 1
2 ; 2,1,0, 1

2 ; 2,1,1, 1
2 ; 2,1,1, 1

2  degeneracy 6 

3d: 
3,2,2, 1

2 ; 3,2,2, 1
2 ; 3,2,1, 1

2 ; 3,2,1, 1
2 ;

3,2,0, 1
2 ; 3,2,0, 1

2 ; 3,2,1, 1
2 ; 3,1,1, 1

2 ; 3,2,2, 1
2 ; 3,2,2, 1

2

 degeneracy 10 

 
(a) (ii) The energy of interaction of a magnetic dipole  with a magnetic field  is . 
Choose the field in the z-direction so that  

. 

The Zeeman perturbation is diagonal in the basis enumerated above and 

 

Here i,j are notational simplifications to represent the set of 4 quantum numbers, and  nn '  is the 
Kronecker delta, 1 if the subscripts are the same, and zero otherwise. 
 
Because the perturbation is diagonal in this basis, at least in each degenerate subspace, it is OK 
to read the corrections to the Coulomb energy from the diagonal elements of the matrix.  

 independent of n and l (expect insofar as they determine the allowed 
values of ml). 
For each state, the energy changes linearly with B, with slope determined by mℓ  2ms  

1s mℓ  2ms  2p mℓ  2ms  3d mℓ  2ms  
    3,2,2, 1

2  3 
    3,2,2, 1

2  1 
  2,1,1, 1

2  2 3,2,1, 1
2  2 

  2,1,1, 1
2  0 3,2,1, 1

2  0 

1,0,0, 1
2  1 2,1,0, 1

2  1 3,2,0, 1
2  1 

1,0,0, 1
2  -1 2,1,0, 1

2  -1 3,2,0, 1
2  -1 

  2,1,1, 1
2  0 3,2,1, 1

2  0 
  2,1,1, 1

2  -2 3,1,1, 1
2  -2 

    3,2,2, 1
2  -1 

    3,2,2, 1
2

-3 



GRAPHS (for large enough field, as shown by solid lines): 
(a) (iii) 3d: 

      
 

(b)   The Coulomb energy of the H atom levels is En  
1

2n2 
2mc2  

13.6
n2 eV 

Corrections come at the level of the fine structure,  
(i) spin-orbit interaction :the response of the electron spin magnetic moment to the 

magnetic field of the proton caused by the orbital motion, 
(ii)  relativistic correction - the kinetic energy of the electron is about 0.01c,  
(iii) Darwin term, a quantum electrodynamic effect that applies only to s states.   

These fine structure corrections are of order  2En  
2 13.6

n2 eV. 

Hyperfine corrections (proton-spin/electron spin interactions) and the Lamb shift (QED 
effect) are all much smaller than the fine structure. 
 
A conservative (high-side) estimate of the fine structure corrections is 

E fs 
13.6

137 137
eV 

1
1370

eV  0.0007 eV
 

 
If the Zeeman effect is to be larger than the fine structure corrections, the order of magnitude 

must be 
 

From this we deduce 
 

 
The earth’s field is about 10-4 T or 1 Gauss.  A typical lab-scale field is 1-10 T.  An 
electromagnet is about 2T, a commercial superconducting magnet can be up to 10-12 T.  In 
special cases, the high field magnet lab, there are special magnets that get to 40T. 

 

E
Zeeman

(3d) 

B 
3,2,2, 1

2

3,2,2, 1
2

3,1,1, 1
2

3,2,1, 1
2

3,2,1, 1
2 3,2,1, 1

2

3,2,0, 1
2 3,2,0, 1

2

3,2,2, 1
2 3,2,0, 1

2

E
zeeman		

(2p) 

B 

2,1,1, 1
2

2,1,1, 1
2

2,1,0, 1
2

2,1,0, 1
2

2,1,1, 1
2 2,1,1, 1

2

E
zeeman		

(1s) 

B 

1,0,0, 1
2

1,0,0, 1
2



Problem 3 Monday afternoon 6

A linearly polarized monochromatic wave E(z, t) = x̂Eei(kz−ωt) is normally incident on a plane
interface between vacuum and a plasma as shown in the figure below. The dispersion relation of
the plasma is given as

ω2 = ω2
p + c2k′2,

where ωp is the plasma frequency, c is the speed of light in vacuum, and k′ is the wavenumber inside
the plasma. The light frequency ω is lower than the plasma frequency (ω < ωp).

z

x

� ���

� ���

��

�� � � � ������������	��
� ���������

�����	���
� ���������������

������ ������

(a) What is the refractive index of the plasma, n(ω)?

(b) Find the transmitted and reflected electric field amplitudes E′ and E′′ at the boundary in
terms of the incident field E and the plasma refractive index n.

(c) The time-averaged energy flux is expressed as the real part of the complex Poynting vector

S =
1

2
<{E×H∗} =

1

2µ0
<{E×B∗} .

Calculate the time-averaged energy flux of the incident, transmitted, and reflected waves, Si,
St, and Sr. What are the reflectance R and transmittance T?

(d) The transmitted wave exponentially decays in the plasma. The decaying electric field can be
expressed as

E′(z, t) = x̂E′e(k
′z−ωt) = x̂|E′|eiφe−z/δei(krz−ωt)

Determine the field amplitude |E′|, the phase φ, the skin depth δ, and the wave number kr
in terms of E, c, ω and ωp.
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A linearly polarized monochromatic wave E(z, t) = x̂Eei(kz−ωt) is normally incident on a plane
interface between vacuum and a plasma as shown in the figure below. The dispersion relation of
the plasma is given as

ω2 = ω2
p + c2k′2,

where ωp is the plasma frequency, c is the speed of light in vacuum, and k′ is the wavenumber inside
the plasma. The light frequency ω is lower than the plasma frequency (ω < ωp).

z

x

� ���

� ���

��

�� � � � ������������	��
� ���������

�����	���
� ���������������

������ ������

(a) What is the refractive index of the plasma, n(ω)?

Solution: .

Modifying the dispersion relation, we obtain

ω2 = ω2
p + c2k′2 ⇒ k′2 =

1

c2
(ω2 − ω2

p)⇒ k′ =
ω

c

√
1−

ω2
p

ω2
= n(ω)

ω

c

Therefore, the refractive index of the plasma is

n(ω) =

√
1−

ω2
p

ω2
(1)

Since n(ω) is pure imaginary for ω < ωp, we can write

n(ω) = iα(ω),where α(ω) =

√
ω2
p

ω2
− 1 and α(ω) > 0 (2)

(b) Find the transmitted and reflected electric field amplitudes E′ and E′′ at the boundary in
terms of the incident field E and the plasma refractive index n.

Solution: .
We use the boundary condition that the electric and magnetic fields are continuous at the
interface. From the Maxwell’s equation, we get

∇×E +
1

c

∂B

∂t
= 0⇒ ik×E− iωB = 0⇒ B =

1

c
k×E
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for a monochromatic plane wave E(x, t) = E0e
i(k·x−ωt). Therefore, the electric and magnetic

fields at the boundary are expressed as

E = Ex̂ B = Bŷ = E
c ŷ (3)

E′ = E′x̂ B′ = B′ŷ = nE′

c ŷ (4)

E′′ = E′′x̂ B′′ = −B′′ŷ = −E
′′

c ŷ (5)

Applying the boundary conditions, we get

E + E′′ = E′ (6)

and
B −B′′ = B′ → E − E′′ = nE′ (7)

From Eq.(6) and (7), we obtain

E′ =
2

1 + n
E =

2

1 + iα
E (8)

E′′ =
1− n
1 + n

=
1− iα
1 + iα

E (9)

(c) The time-averaged energy flux is expressed as the real part of the complex Poynting vector

S =
1

2
<{E×H∗} =

1

2µ0
<{E×B∗} .

Calculate the time-averaged energy flux of the incident, transmitted, and reflected waves, Si,
St, and Sr. What are the reflectance R and transmittance T?

Solution: .

From Eqs. (3)-(6),

H =
E

cµ0
ŷ = cε0Eŷ (10)

H′ =
nE′

cµ0
ŷ = icαε0E

′ŷ (11)

H′′ = −cε0E′′ŷ (12)

Therefore, the time-averaged energy fluxes are

Si =
1

2
<{E×H∗} =

1

2
cε0|E|2ẑ (13)

St =
1

2
<
{
icαε0|E|2ẑ

}
= 0 (14)

Sr = −1

2
cε0|E′′|2ẑ = −1

2
cε0

∣∣∣∣1− iα1 + iα

∣∣∣∣2 |E|2ẑ = −1

2
cε0|E|2ẑ = Si (15)
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Inside the plasma, St = 0, because the EM wave forms a standing wave in whichH ′ = icαε0E
′,

i.e., E′ and B′ has the π/2 phase difference. In this case, the time average of the Poyinting
vector vanishes because 〈cos(ωt) cos(ωt+ π/2)〉 = 〈cos(ωt) sin(ωt)〉 = 0.

The reflectance and transmittance are

R =
|Sr|
|Si|

= 1 (16)

T =
|St|
|Si|

= 0 (17)

(d) The transmitted wave exponentially decays in the plasma. The decaying electric field can be
expressed as

E′(z, t) = x̂E′e(k
′z−ωt) = x̂|E′|eiφe−z/δei(krz−ωt)

Determine the field amplitude |E′|, the phase φ, the skin depth δ, and the wave number kr
in terms of E, c, ω and ωp.

Solution: .

From Eq.(8), we get

E′ =
2

1 + iα
E ⇒ |E′| =

∣∣∣∣ 2

1 + iα

∣∣∣∣ |E| = 2√
1 + α2

|E| (18)

and
2

1 + iα
=

2

1 + α2
(1− iα)⇒ tanφ = −α⇒ φ = − tan−1 α (19)

Since eik
′z = e−α

ω
c z,

δ =
ω

cα
=

c√
ω2
p − ω2

(20)

Because k′ = iαωc is pure imaginary,
kr = 0 (21)
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Two parallel conducting plates of area A and thickness a are separated by a distance d as shown
in the figure below. They carry charges, 2Q and −Q, respectively. Assume that the plates are
infinitely large, i.e., A� d2, a2.

�� ��

x

d

0 d+a

a

a d+2a

� �

(a) What is the electric field inside the conductors for 0 < x < a and d+ a < x < d+ 2a?

(b) Determine the surface charge density σ on the plates at x = 0, a, d+ a, and d+ 2a. Assume
that each surface carries a uniform charge density.

(c) Find the electric field E in the regions of (i) x < 0, (ii) a < x < d+ a, and (iii) x > d+ 2a.

(d) Find the electric potential V (x) when the left conducting plate is grounded. Sketch V (x) as
a function of x.
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Two parallel conducting plates of area A and thickness a are separated by a distance d as shown
in the figure below. They carry charges, 2Q and −Q, respectively. Assume that the plates are
infinitely large, i.e., A� d2, a2.

�� ��

x

d

0 d+a

a

a d+2a

� �

(a) What is the electric field inside the conductors for 0 < x < a and d+ a < x < d+ 2a?

Solution: .
E = 0 inside conductors.

(b) Determine the surface charge density σ on the plates at x = 0, a, d+ a, and d+ 2a. Assume
that each surface carries a uniform charge density.

Solution: .

�� ��

x
0 d+aa d+2a

�� �� �� ��

On the first and second plates,

σ1 + σ2 =
2Q

A
(22)

σ3 + σ4 = −Q
A

(23)
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Using Gauss’s law, we obtain the electric field of an infinite plane carrying a uniform surface
charge σ,

E =
σ

2ε0
n̂,

where n̂ is a surface normal unit vector pointing away from the surface.

Because the electric field vanishes inside the first plate (0 < x < a),

E =
σ1
2ε0

x̂− σ2
2ε0

x̂− σ3
2ε0

x̂− σ4
2ε0

x̂ = 0

⇒ σ1 = σ2 + σ3 + σ4 (24)

Similarly, because E = 0 for d+ a < x < d+ 2a,

σ1 + σ2 + σ3 = σ4 (25)

Subtracting Eq.(4) from Eq.(3),
σ2 + σ3 = 0 (26)

From Eq.(3) and Eq.(5),
σ1 = σ4 (27)

Since σ4 = σ1 and σ3 = −σ2, Eq.(2) becomes

σ1 − σ2 = −Q
A

(28)

From Eq.(1) and Eq.(7),

σ1 = σ4 =
Q

2A
(29)

and

σ2 = −σ3 =
3Q

2A
(30)

(c) Find the electric field E in the regions of (i) x < 0, (ii) a < x < d+ a, and (iii) x > d+ 2a.

Solution: .

Near a conducting surface,

E =
σ

ε0
n̂,

where n̂ is a surface normal unit vector pointing away from the surface.

(i) For x < 0,

E = −σ1
ε0
x̂ = − Q

2ε0A
x̂

(i) For 0 < x < d+ a,

E =
σ2
ε0
x̂ = −σ3

ε0
x̂ =

3Q

2ε0A
x̂
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(i) For x > d+ a,

E =
σ4
ε0
x̂ =

Q

2ε0A
x̂

(d) Find the electric potential V (x) when the left conducting plate is grounded. Sketch V (x) as
a function of x.

Solution: .

The electric potential is

V (x) = −
∫ x

x0

E(x)dx+ V (x0),

where V (0) = V (a) = 0 because the left conducting plate is grounded.

(i) For x < 0,

V (x) = −
∫ x

0

(
Q

2ε0A

)
dx =

Q

2ε0A
x

(ii) For 0 < x < a, V (x) = 0.

(iii) For a < x < a+ d,

V (x) = −
∫ x

a

(
3Q

2ε0A

)
dx+ V (a) = − 3Q

2ε0A
(x− a)

(iv) For d+ a < x < d+ 2a,

V (x) = V (d+ a) = − 3Q

2ε0A
d

(iv) For x > d+ 2a,

V (x) = −
∫ x

d+2a

(
3Q

2ε0A

)
dx+V (d+2a) = − Q

2ε0A
(x−d−2a)− 3Q

2ε0A
d = − Q

2ε0A
(x+2d−2a)

����

�

� � � � � � 2�

�
3�

��
�

�
�

�

��
�

�
�

�
��

��
�

�
� � �

�
�

��
�

�
� � 2� � 2�
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Consider a thermally insulated box with volume 2V0 containing two distinct monatomic ideal gasses,
separated by an impermeable barrier, as illustrated below.

On the left of the partition are N0 atoms of a circular atom type, stored in volume V0 at temperature
T0. On the right side of the partition are N0 atoms of a square atom type, which occupy volume
V0 and are in thermal equilibrium with the circular atoms on the left side of the barrier.

For this problem you may need the following equations of state defining the behavior of a mixture
of two monatomic ideal gasses:

U =
3

2
NkBT

p =
NkBT

V

where N is the total number of atoms (squares plus circles) in a given volume.

(a) (3 pts) The barrier between the two sides of the box is now made permeable to the circular
atoms only, while remaining impermeable to the square atoms on the right side.

When the box has reached equilibrium, what is the pressure in each side of the box?

(b) (3 pts) During this process, did the entropy of the system increase, decrease or remain the
same? Explain your answer.

(c) (3 pts) During this process, did the temperature of the system increase, decrease or remain
the same? Explain your answer.

(d) (3 pts) Now we will slowly move the permeable partition to the left side of the box, until it
reaches the left-hand wall, at which point there will be only one enclosure with volume equal
to 2V0.

Consider the change in entropy of the system (enclosed by the box) due to moving the per-
meable membrane to its edge. Is this change positive, negative or zero? Explain your answer.

(e) (8 pts) What is the final temperature of the system?
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Consider a thermally insulated box with volume 2V0 containing two distinct monatomic ideal gasses,
separated by an impermeable barrier, as illustrated below.

On the left of the partition are N0 atoms of a circular atom type, stored in volume V0 at temperature
T0. On the right side of the partition are N0 atoms of a square atom type, which occupy volume
V0 and are in thermal equilibrium with the circular atoms on the left side of the barrier.

For this problem you may need the following equations of state defining the behavior of a mixture
of two monatomic ideal gasses:

U =
3

2
NkBT

p =
NkBT

V

where N is the total number of atoms (squares plus circles) in a given volume.

(a) (3 pts) The barrier between the two sides of the box is now made permeable to the circular
atoms only, while remaining impermeable to the square atoms on the right side.

When the box has reached equilibrium, what is the pressure in each side of the box?

Solution: .
The circles will equally fill each box, so we will end up with N0 squares and N0/2 circles on
the right, and N0/2 circles on the left.

To find the pressure on each side, we will also need to know the temperature. There is no
work done during this process, and nor does heat leave the system, so the internal energy
must be a constant. Since the number N is also a constant, based on our formula for U we
can conclude that T is constant. Thus

pL =
1

2

N0kT0
V0

pR =
3

2

N0kT0
V0

(b) (3 pts) During this process, did the entropy of the system increase, decrease or remain the
same? Explain your answer.
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Solution: .
This is a spontaneous process, so the entropy of system plus surroundings increased. Since
the system is isolated, the surroundings didn’t change, and thus the entropy of the system
increased.

(c) (3 pts) During this process, did the temperature of the system increase, decrease or remain
the same? Explain your answer.

Solution: .
(We did this earlier, but I will repeat it here for clarity.) There is no work done during this
process, and nor does heat leave the system, so the internal energy must be a constant. Since
the number N is also a constant, based on our formula for U we can conclude that T is
constant (i.e. T = T0 on both sides of the box).

(d) (3 pts) Now we will slowly move the permeable partition to the left side of the box, until it
reaches the left-hand wall, at which point there will be only one enclosure with volume equal
to 2V0.

Consider the change in entropy of the system (enclosed by the box) due to moving the per-
meable membrane to its edge. Is this change positive, negative or zero? Explain your answer.

Solution: .
The entropy of the system does not change during this process, because it is slow and re-
versible. This means the entropy of system plus surroundings does not change (by Second
Law), and since the surroundings does not change, the entropy of the system must also not
change.

(e) (8 pts) What is the final temperature of the system?

Solution: .
To find the change in temperature requires us to think about energy conservation. The square gas
is clearly going to work as it expands, and that energy is going to have to come from its internal
energy, since there is no heat flow from the system (assuming we view the system as the entire
combined system). Let’s look at the change in internal energy two ways, first as the work done,
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and secondly as relates to temperature given the formula for internal energy.

dU = −pdV (31)

dU =
3

2
NtotkdT (32)

= 3N0kdT (33)

At the last step, we noted that the total number of atoms is twice N0. The two gases are in thermal
contact, so both will be at the same temperature during this slow process. We can now set these
expressions for dU equal, and then apply the ideal gas law to the square gass (since the difference
in pressure is what is needed for the work done, and that is entirely due to the square gas).

−psquaredV = 3N0kdT (34)

−N0kT

V
dV = 3N0kdT (35)

−dV
V
dV = 3

dT

T
(36)

Now that we know how much the temperature changes for an infinitesimal change in volume, we
just need to integrate to find the final temperature.

−
∫ 2V0

V0

dV

V
= 3

∫ Tf

T0

dT

T
(37)

− ln

(
2V0
V0

)
= 3 ln

(
Tf
T0

)
(38)

ln

(
1

2

)
= ln

[(
Tf
T0

)3
]

(39)

1

2
=

(
Tf
T0

)3

(40)

Tf = 2−
1
3T0 (41)

So the temperature drops by a factor of 2−
1
3 . Note that blind application of pV γ (because it is an

adiabatic expansion) fails. This is because the square gas is in thermal contact with the circular gas,
so the square gas treated as a separate system is not undergoing adiabatic expansion. Fortunately,
the correct approach to this problem is identical to that for the ordinary adiabatic expansion, so if
you understand one, you should understand the other.
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Consider a system of N rigid rotors at temperature T . The energy eigenvalues of the rigid rotor
are given by the following expression:

Elm =
~2

2I
`(`+ 1)

` = 0, 1, 2, · · ·
m = −`, · · · , 0, · · · , `

where I is the moment of inertia, and ` and m are the usual angular momentum quantum numbers.

(a) (6 pts) Find an expression for the internal energy of this system, consisting of N rigid rotors
at temperature T .

(b) (8 pts) Find the internal energy in the high temperature limit (kT � ~2/2I). You can get
two points by using physical arguments to reach the correct limit without finding the limit
using math.

(c) (6 pts) Find the low-temperature limit (kT � ~2/2I) of the internal energy, keeping some
temperature dependence (i.e. an expression that is independent of T is not acceptable).
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Consider a system of N rigid rotors at temperature T . The energy eigenvalues of the rigid rotor
are given by the following expression:

Elm =
~2

2I
`(`+ 1)

` = 0, 1, 2, · · ·
m = −`, · · · , 0, · · · , `

where I is the moment of inertia, and ` and m are the usual angular momentum quantum numbers.

(a) (6 pts) Find an expression for the internal energy of this system, consisting of N rigid rotors
at temperature T .

Solution: .
The internal energy is given in general by

U = N

∑all states
i Eie

−βEi∑all states
i e−βEi

(42)

which is just the Boltzmann-weighted average of the energy for a single rotor, multiplied by
the total number of rotors N . In our case this comes out to:

U = N

∑all states
i Eie

−βEi∑all states
i e−βEi

(43)

= N

∑∞
`=0

∑`
m=−`E`e

−βE`∑∞
`=0

∑`
m=−` e

−βE`

(44)

= N
~2

2I

∑∞
`=0(2`+ 1)(`2 + `)e−

~2(`2+`)
2IiT∑∞

`=0(2`+ 1)e−
~2(`2+`)

2IkT

(45)

This last expression is as simple as we can get it without making any additional assumptions.

(b) (8 pts) Find the internal energy in the high temperature limit (kT � ~2/2I). You can get
two points by using physical arguments to reach the correct limit without finding the limit
using math.

Solution: .
In the high-temperature limit ~2

2IkT � 1, which means that the dimensionless quantity
~2

2IkT (`2 + `) changes only by a small amount when ` changes by 1, so we can approximate
each sum using an integral.

Let’s start with the partition function:

Z =
∞∑
`=0

(2`+ 1)e−
~2(`2+`)

2IkT (46)

≈
∫ ∞
0

d`(2`+ 1)e−
~2(`2+`)

2IkT (47)



Solutions to problem 6 Tuesday morning 20

We can do a u substitution with u = (`2 + `)~2/(2IkT ).

Z ≈ 2IkT

~2

∫ ∞
0

e−udu (48)

=
2IkT

~2
(49)

=
2I

~2β
(50)

Now we need to do the numerator. Fortunately, there is an extra-nice trick for doing that,
which is to recognize that

all states∑
i

Eie
−βEi = −dZ

dβ
(51)

≈ 2I

~2β2
(52)

=
2IkT

~2
kT (53)

Thus we find that

U ≈ N
2IkT
~2 kT
2IkT
~2

(54)

= NkT (55)

The short way of getting to this answer is to use equipartition, and recognize that classically
there are two quadratic degrees of freedom, which are the kinetic energy for rotation in two
directions. However, the problem asked you to show this, and you only get partial credit for
using equipartition.

(c) (6 pts) Find the low-temperature limit (kT � ~2/2I) of the internal energy, keeping some
temperature dependence (i.e. an expression that is independent of T is not acceptable).

Solution: .
The low-temperature limit is easier than the high-temperature limit. In this case, the dimensionless
quantity in the exponential is large rather than small. This means that each term in the sum is
way smaller than the last, so we can approximate the energy by just keeping the first few terms.

U = N
~2

2I

∑∞
`=0(2`+ 1)(`2 + `)e−

~2(`2+`)
2IiT∑∞

`=0(2`+ 1)e−
~2(`2+`)

2IkT

(56)

≈ N ~2

2I

0 + 3 · 2 e− 2~2

2IkT

1 + 2 e−
2~2

2IkT

(57)

≈ N ~2

2I
6 e−

~2

IkT (58)

At low temperatures the internal energy is exponential in β, which is what we expect in any system
with an energy gap between the ground state and first excited state.
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Three coupled masses on a circle.
Three identical point masses m are constrained to move on a circle, as shown in the figure below.
The masses are connected with identical springs each with spring constant, k that obey Hooke’s
Law on the same circle. There is no friction, gravity or motion outside the circle.

(a) Find all the natural or characteristic frequencies of oscillation for this system.

(b) Solve for the normal modes and describe the motion of the masses for each mode (with words
or a rough sketch).

(c) At t = 0 masses at position 1 was found to be displaced by a distance δ from its equilibrium
position (i.e. when all springs are unstretched as shown above). The velocities of all three
masses at t = 0 were zero. Find the resulting equations of motion for each of the three masses
as a function of time.
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Three coupled masses on a circle.
Three identical point masses m are constrained to move on a circle, as shown in the figure below.
The masses are connected with identical springs each with spring constant, k that obey Hooke’s
Law on the same circle. There is no friction, gravity or motion outside the circle.

(a) Find all the natural or characteristic frequencies of oscillation for this system.

Solution: .
Let x1−3(t) be the circular motion displacement from equilibrium for each mass. The equa-
tions of motions can be written down by Hooke’s and Newton’s law by direct inspection,
specifically

mẍ1 = −k(x1 − x2) + k(x3 − x1) (59)

mẍ2 = k(x1 − x2)− k(x2 − x3) (60)

mẍ3 = k(x2 − x3)− k(x3 − x2) (61)

(62)

Assume the solution may be obtained with an exponential of form xn(t) = An exp iωt, and
we may solve the coupled ODEs by method of determinants to give a matrix,

0 = [C −mω2I]A =

2k −mω2 −k −k
−k 2k −mω2 −k
−k −k 2k −mω2

A1

A2

A3


Let λ = mω2/k and define M =

2− λ −1 −1
−1 2− λ −1
−1 −1 2− λ

We can now solve for the eigenvalues
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(or characteristic frequencies) of matrix C by,

det (C − λI) = (2− λ)3 − (2− λ)− 1− (2− λ)− 1− (2− λ) (63)

= (2− λ)3 − 3(2− λ)− 2 (64)

= −λ(λ2 − 6λ+ 9) (65)

= −λ(λ− 3)2 (66)

= 0 (67)

Therefore, λ = 3 or λ = 0. Hence characteristic frequencies are ω1 = 0 and ω2 = ω3 =√
3k/m.

(b) Solve for the normal modes and describe the motion of the masses for each mode (with words
or a rough sketch).

Solution: .
Case 1; ω = 0. By inspection of the matrix M it is readily seen that the eigen-equation is
only satisfied when A1 = A2 = A3. This corresponds to the collective circular motion of all
three masses with (the springs unstretched) in either the clockwise or anti-clockwise directions.

Case 2; ω =
√

3k/m. Here M =

−1 −1 −1
−1 −1 −1
−1 −1 −1

 and so −A1 − A2 − A3 = 0, and this

normal modes must orthogonal to case 1, for instance if A1 = −A2 and A3 = 0 masses 1 and
2 will oscillate anti-symmetrically, and mass 3 will not oscillate. Likewise if A1 = A2 = −2A3,
masses 1 and 2 will start by oscillating in phase clockwise toward mass 3, and mass 3 will
oscillate anti-clockwise with half the relative amplitude.

(c) At t = 0 masses at position 1 was found to be displaced by a distance δ from its equilibrium
position (i.e. when all springs are unstretched as shown above). The velocities of all three
masses at t = 0 were zero. Find the resulting equations of motion for each of the three masses
as a function of time.

Solution: .
You are given the initial conditions that: x1(t = 0) = δ and x2 = x3 = 0, likewise since all
start from rest ẋ1 = ẋ2 = ẋ3 = 0.

To get a general solution we must first construct a superposition of normal mode equations
of motion. Specifically, case 1 above gives, A1 = A2 = A3 and so the normalized q1 =

1√
3

1
1
1

 (at+ b), with since ω = 0 the masses can only move (not oscillate). Under our initial

conditions a = 0, and b = 1.

In case 2, we can write two solutions that oscillate at ω =
√

3k/m, namely q2 = 1√
2

 1
−1
0

 cos(ωt+
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φ) and q3 = 1√
6

 1
1
−2

 cos(ωt+ φ). Since the masses are not initially out of phase φ = 0.

To get the generalized equation we can write it as superposition of normal modes (weighted

by their amplitudes) under the initial condition that q(t = 0) = δ

1
0
0

. This implies that,

q(t) = δ√
3
q1(t) + δ√

2
q2(t) + δ√

6
q3(t)

Lastly we can evaluate q(t) for x1−3(t) under our initial conditions as, specifically that

x1(t) =
1√
3

δ√
3

+
1√
2

δ√
2

cos(ωt) +
1√
6

δ√
6

cos(ωt) (68)

=
δ

3
+

2δ

3
cos(ωt) (69)

x2(t) =
δ

3
− δ

3
cos(ωt) (70)

x3(t) =
δ

3
− δ

3
cos(ωt) (71)

Thus the system will oscillate at ω =
√

3k/m. Masses 2 and 3 will oscillate in phase with
eachother and mass 1 will have twice the amplitude and be anti-phased with respect to masses
2 and 3.
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A solid cylinder of mass m and radius a rolls without slipping from rest under the influence of
gravity from the top of a fixed solid half-cylinder of radius R, as shown below. Once rolling fast
enough, the rolling cylinder may leave the surface of the static half-cylinder.

(a) Derive the moment of inertia for the rolling solid cylinder about its axis.

(b) Find the differential equations of motion for this system.

(c) Derive an expression for the point (e.g. angle) at which the cylinder leaves the surface of the
surface.
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A solid cylinder of mass m and radius a rolls without slipping from rest under the influence of
gravity from the top of a fixed solid half-cylinder of radius R, as shown below. Once rolling fast
enough, the rolling cylinder may leave the surface of the static half-cylinder.

(a) Derive the moment of inertia for the rolling solid cylinder about its axis.

Solution: .
The moment of inertia is defined as I =

∫m
0
r2dm′. The mass element can be expressed in

terms of an infinitesimal radial thickness dr given by: dm′ = ρdV = ρL2πrdr where the
density is ρ = m

πa2L . Putting this in the definition we get:

I = 2πρL

∫ a

0

r3dr (72)

= 2πρL
a4

4
(73)

= 2π
m

πa2L
L
a4

4
(74)

=
1

2
ma2 (75)

(b) Find the differential equations of motion for this system.

Solution: .

The angular displacement of the system is in terms of two angles that represent the angular
displacements of the cylinder rolling and its position on the surface as φ and θ, respectively.
Let r and ṙ be the unconstrained radial position/velocity of the center of mass of the cylinder
(this values is constant at r = R until the cylinder leaves the surface). The rolling of the
cylinder can be described by an angular velocity ωcylinder. The rolling without slipping
condition is then Rθ = aφ.
The kinetic energy (e.g. 1

2Iθ̇
2) of the system is then the sum of the two angular velocity

contributions and the the radial velocity (which is non-zero once the cylinder leaves the
surface). The potential energy while the cylinder is on the surface is always just the gravitation
component (i.e. mgr cos θ).
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The Lagrangian is L = T − U . We further evaluate the Lagrangian (under the Rθ = aφ
rolling without slipping condition to eliminate the φ coordinate),

L = T − U (76)

=
1

2
mṙ2 +

1

2
m(rθ̇)2 +

1

2
Iφ̇2 −mgr cos θ (77)

=
1

2
mṙ2 +

1

2

(
mr2 +

1

2
mR2

)
θ̇2 −mgr cos θ (78)

To get the differential equations of motion we invoke the Euler-Lagrange equations. But, we
must further include a constraint to account for the condition where the cylinder is rolling
on the surface, i.e. f(r, θ) = r − a − R = 0. This force constraint can be included in the
Euler-Lagrange equations, by using a undetermined multiplier λ. With respect to θ we get,

0 =
∂L
∂θ
− d

dt

(
∂L
∂θ̇

)
+ λ

∂f

∂θ
(79)

0 = mgr sin θ −
(
mr2 +

1

2
mR2

)
θ̈ − 2mṙθ̇ + λ · 0 (80)

0 = g(a+R) sin θ −
(

(a+R)2 +
1

2
R2

)
θ̈ (81)

where in the last line we use r = a+R and ṙ = 0 until the cylinder leaves the surface of the
surface.

With respect to r we get,

0 =
∂L
∂r
− d

dt

(
∂L
∂ṙ

)
+ λ

∂f

∂r
(82)

0 = mr2θ̇2 −mg cos θ −mr̈ + λ (83)

0 = m(a+R)2θ̇2 −mg cos θ + λ (84)

where in the last line we use r = a+R and r̈ = 0 until the cylinder leaves the surface of the
surface.

Therefore our differential equations of motion are:

0 = g(a+R) sin θ −
(

(a+R)2 +
1

2
R2

)
θ̈ (85)

0 = m(a+R)2θ̇2 −mg cos θ + λ (86)

Note that both equations of motion independently describe the motion of the cylinder on the
surface allowing for us to solve of λ (part c).

(c) Derive an expression for the point (e.g. angle) at which the cylinder leaves the surface of the
surface.
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Solution: .
First, you should recognize from part b that we have two equations that depend only on θ
and λ; hence if λ is known, then that angle at which the cylinder leaves the surface is also
known. Solving first for θ̈, and then for θ̇ by integration, we obtain,

θ̈ =
g(a+R)

(a+R)2 + 1
2R

2
sin θ (87)

θ̇dθ̇ =
g(a+R)

(a+R)2 + 1
2R

2
sin θdθ (88)

⇒ 1

2
θ̇2 = − g(a+R)

(a+R)2 + 1
2R

2
cos θ + C (89)

(90)

The constant C is found by the initial condition of rolling from rest (i.e. θ̇ = 0 when θ = 0),

hence C = g(a+R)

(a+R)2+ 1
2R

2 or θ̇2 = 2 g(a+R)

(a+R)2+ 1
2R

2 (1− cos θ). We can now plug our expression for

θ̇ in the second Euler-Lagrange equation in part b to obtain:

0 = m(a+R)2θ̇2 −mg cos θ + λ (91)

0 = m(a+R)22
g(a+R)

(a+R)2 + 1
2R

2
(1− cos θ)−mg cos θ + λ (92)

⇒ λ = mg
3(a+R)2 + 1

2R
2

(a+R)2 + 1
2R

2
cos θ − 2mg(a+R)2

(a+R)2 + 1
2R

2
(93)

The cylinder will leave the surface when λ = 0, i.e. when

θ = arccos

[
2(a+R)2

3(a+R)2 + 1
2R

2

]
(94)




