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OSU Physics Department
Comprehensive Examination #124

Monday, January 4, Tuesday, January 5, 2016

Winter 2016 Comprehensive Examination

PARTS 1, 2, 3 & 4

General Instructions

Comprehensive Examination consists of four separate parts of two problems each. Each problem
caries equal weight (20 points each). The first part (Quantum Mechanics) is handed out at 9:00 am
on Monday, January 4, and lasts three hours. The second part (Electricity and Magnetism) will
be handed out at 1:00 pm on the same day and will also last three hours. The third (Statistical
Mechanics) and fourth (Classical Mechanics) parts will be administered on Tuesday, January 5,
at 9:00 am and 1:00 pm, respectively. Work carefully, indicate your reasoning, and display your
work clearly. Even if you do not complete a problem, it might be possible to obtain partial credit—
especially if your understanding is manifest. Use no scratch paper; do all work in the bluebooks,
work each problem in its own numbered bluebook, and be certain that your chosen student letter
(but not your name) is inside the back cover of every booklet. Be sure to make note of your student
letter for use in the remaining parts of the examination.

If something is omitted from the statement of the problem or you feel there are ambiguities,
please get up and ask your question quietly and privately, so as not to disturb the others. Put
all materials, books, and papers on the floor, except the exam, bluebooks and the collection of
formulas and data distributed with the exam. Calculators are not allowed except when a numerical
answer is required—calculators will then be provided by the person proctoring the exam. Use the
last pages of your bluebooks for “scratch” work, separated by at least one empty page from your
solutions. “Scratch” work will not be graded.

If you submit blue books for any given section, that section will be graded as part of your
cumulative score. Unless you are taking the exam for practice, all sections not previously passed
need to be attempted and submitted.
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Problem 1 Monday morning 3

Time-dependent wavefunctions describing energy eigenstates of a simple harmonic oscillator can
be written as

ψn(x, t) = φn(x) exp (−iβnt) .

For example, the first excited state of an oscillator with characteristic frequency ω is described
by φ1 and β1 written as,

φ1(x) =

√
2α3

√
π
x exp

(
−α

2x2

2

)
(1)

β1 =
3

2
ω (2)

(a) Show that ψo(x, t) is a solution to the Schrodinger equation for a simple harmonic oscillator
when

φ0(x) =

√
α

π
exp

(
−α

2x2

2

)
.

Find the values of α and β0 in terms of the mass m of the oscillator, the characteristic
frequency ω of the oscillator, and fundamental constants.

(b) At t = 0, the same simple harmonic oscillator is in the state

ψ(x, t = 0) = cos(θ)φ0(x) + sin(θ)φ1(x)

where cos θ and sin θ are real-valued coefficients. Find the expectation value of position, 〈x〉,
at a subsequent time t.

Useful result: ∫ ∞
−∞

u2e−u
2

du =

√
π

2
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Problem 2 Monday morning 5

Consider a very small disk that is free to rotate on a fixed axle (see Figure above). The disk
has moment of inertia I about this axis.

(a) Use quantum mechanics to find expressions for the:

(i) Eigenenergies of the system

(ii) Normalized wave function of the mth energy eigenstate

(b) The disk has an electric dipole moment d (half the disk is positively charged, half the disk
is negatively charged, see Figure below). Calculate the first non-zero correction to the
eigenenergies when a small electric field is applied perpendicular to the axis of rotation.
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Problem 3 Monday afternoon 7

A slowly varying bias V (t) = V0 cosωt (ω � 2πc
a , where c is the speed of light) is applied between

two conducting plates between which a thin circular disk of radius a and length L (a� L) is placed.
The disk has electrical susceptibility χe, magnetic susceptibility χm, and conductivity σ.
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(a) Find the electric field E and the current density J inside the disk. You may assume that E
and J are uniform inside the disk.

(b) Find the H-field H and the magnetic field B inside the disk.

(c) We consider the energy dissipation of the circuit.

(i) Calculate the time-averaged energy dissipation inside the disk.

(ii) Find the time-averaged Poynting vector inside the disk and explain the physical meaning
of the direction of the Poynting vector.

(iii) Show that the energy dissipation is equal to the surface integration of the Poynting vector
over the surface of the disk, where the surface normal is pointing inward. Explain the physical
meaning of the result.



Solutions to problem 3 Monday afternoon 8

A slowly varying bias V (t) = V0 cosωt (ω � 2πc
a , where c is the speed of light) is applied between

two conducting plates between which a thin circular disk of radius a and length L (a� L) is placed.
The disk has electrical susceptibility χe, magnetic susceptibility χm, and conductivity σ.
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(a) Find the electric field E and the current density J inside the disk. You may assume that E
and J are uniform inside the disk.

Solution: .
In the low frequency limit, we may apply the static field approximation, i.e., the Maxwell’s
equation reduces to

∇×E +
∂B

∂t
= 0→ ∇×E ∼= 0

and the field can be obtained from the scalar potential,

E = −∇V

Since the field and current density are uniform inside the disk

E(t) =
V (t)

L
ẑ =

V0
L

cosωtẑ

J(t) = σE(t) =
σV0
L

cosωtẑ

(b) Find the H-field H and the magnetic field B inside the disk.

Solution: .
In the low frequency limit,

∇×H = J +
∂D

∂t
→ ∇×H ∼= J



Solutions to problem 3 Monday afternoon 9

�

�

��

Using the Ampere’s law ∫
C

H · dl = I

and H = Hφ̂ due to the cylindrical symmetry,

2πrH = J · πr2

→ H =
r

2
J =

σV0
2L

r cosωt

→ H = φ̂
σV0
2L

r cosωt

and

B = µH = µ0(1 + χm)H

= φ̂µ0(1 + χm)
σV0
2L

r cosωt

(c) We consider the energy dissipation of the circuit.

(i) Calculate the time-averaged energy dissipation inside the disk.

(ii) Find the time-averaged Poynting vector inside the disk and explain the physical meaning
of the direction of the Poynting vector.

(iii) Show that the energy dissipation is equal to the surface integration of the Poynting vector
over the surface of the disk, where the surface normal is pointing inward. Explain the physical
meaning of the result.

Solution: .
(i) The time-averaged energy dissipation is

P =

〈∫
J ·Edv

〉
=

σV0
L

V0
L
· πa2 · L〈cos2 ωt〉

=
1

2
πa2σ

V 2
0

L



Solutions to problem 3 Monday afternoon 10

(ii) The time-averaged Poynting vector is

〈S〉 = 〈E×H〉 =
V0
L

σV0
2L

r〈cos2 ωt〉(ẑ × φ̂)

= −σV
2
0

4L2
rr̂

The Poynting vector is pointing inwards, meaning that energy is flowing into the disk.

(iii) The surface integration of the Poynting vector can be decomposed into three parts for the
two end surfaces and the side surface. The integrations over the end surfaces vanish because
the Poynting vector (〈S〉 ‖ −r̂) is perpendicular to the end surfaces (n̂ ‖ ±ẑ). On the other
hand, the inward-pointing normal of the side surface is −r̂, and hence∫

〈S〉 · da =

∫
(−aσV

2
0

4L2
r̂) · da(−r̂)

=
aσV 2

0

4L2
· 2πaL =

1

2
πa2σ

V 2
0

L
= P

This result confirms energy conservation: the loss of electrical energy (energy dissipation) is
equal to the electromagnetic energy flowing into the disk.



Problem 4 Monday afternoon 11

Two hollow spheres of radius a are centered at (0, 0, d) and (0, 0,−d), where d > a. They carry
uniform surface charge density of σ and −σ, respectively, and rotate around z-axis at angular
frequency ω.
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(a) Find the potential, V (r), and the electric field, E(r), inside and outside the spheres.

(b) Show that

V (r, θ, φ) ∼=
2σa2d

ε0r2
cos θ

and

E(r, θ, φ) ∼=
2σa2d

ε0r3
(2 cos θr̂ + sin θθ̂)

in the far zone for r � d, where r = (r, θ, φ) in the spherical coordinate.

(c) Find the magnetic field B (i) at r = 0 and (ii) on z-axis for |z| >> d.

Useful formula: The magnetic field B(r) at position r generated by a steady current I is

B(r) =
µ0

4π

∫
C

Idl× (r− r′)

|r− r′|3
- Biot-Savart Law
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Two hollow spheres of radius a are centered at (0, 0, d) and (0, 0,−d), where d > a. They carry
uniform surface charge density of σ and −σ, respectively, and rotate around z-axis at angular
frequency ω.
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(a) Find the potential, V (r), and the electric field, E(r), inside and outside the spheres.

Solution: .
The total charges on sphere 1 and 2 are Q and −Q, respectively, where Q = 4πσa2. The
charge distribution on each sphere is spherically symmetric, therefore, applying the Gauss
law, we obtain the potential and the electric field induced by the sphere 1,

V1(r) =

{
1

4πε0

Q
|r−d| outside the sphere 1

1
4πε0

Q
a inside the sphere 1

E1(r) =

{ Q
4πε0

r−d
|r−d|3 outside the sphere 1

0 inside the sphere 1

and the potential and the electric field induced by the sphere 2,

V2(r) =

{
− 1

4πε0

Q
|r+d| outside the sphere 1

− 1
4πε0

Q
a inside the sphere 1

E2(r) =

{
− Q

4πε0
r+d
|r+d|3 outside the sphere 1

0 inside the sphere 1

where d = dẑ.

Applying the superposition principle, we get

V (r) = V1(r) + V2(r) =


Q

4πε0

{
1
|r−d| −

1
|r+d|

}
outside the spheres 1 and 2

Q
4πε0

{
1
a −

1
|r+d|

}
inside the sphere 1

Q
4πε0

{
1
|r−d| −

1
a

}
inside the sphere 2



Solutions to problem 4 Monday afternoon 13

E(r) = E1(r) + E2(r) =


Q

4πε0

{
r−d
|r−d|3 −

r+d
|r+d|3

}
outside the spheres 1 and 2

− Q
4πε0

r+d
|r+d|3 inside the sphere 1

Q
4πε0

r−d
|r−d|3 inside the sphere 2

(b) Show that

V (r, θ, φ) ∼=
2σa2d

ε0r2
cos θ

and

E(r, θ, φ) ∼=
2σa2d

ε0r3
(2 cos θr̂ + sin θθ̂)

in the far zone for r � d, where r = (r, θ, φ) in the spherical coordinate.

Solution: .
In the spherical coordinate,

|r− d| = (r2 + d2 − 2rd cos θ)1/2

|r + d| = (r2 + d2 + 2rd cos θ)1/2

r− d = rr̂ − dẑ = (r − d cos θ)r̂ + d sin θθ̂

r + d = rr̂ + dẑ = (r + d cos θ)r̂ − d sin θθ̂

Therefore,

V (r) = V1(r)+V2(r) =


Q

4πε0

{
1

(r2+d2−2rd cos θ)1/2 −
1

(r2+d2+2rd cos θ)1/2

}
outside the spheres 1 and 2

Q
4πε0

{
1
a −

1
(r2+d2+2rd cos θ)1/2

}
inside the sphere 1

Q
4πε0

{
1

(r2+d2−2rd cos θ)1/2 −
1
a

}
inside the sphere 2

E(r) = E1(r)+E2(r) =


Q

4πε0

{
(r−d cos θ)r̂+d sin θθ̂
(r2+d2−2rd cos θ)3/2 −

(r+d cos θ)r̂−d sin θθ̂
(r2+d2+2rd cos θ)3/2

}
outside the spheres 1 and 2

− Q
4πε0

(r+d cos θ)r̂−d sin θθ̂
(r2+d2+2rd cos θ)3/2

inside the sphere 1

Q
4πε0

(r−d cos θ)r̂+d sin θθ̂
(r2+d2−2rd cos θ)3/2 inside the sphere 2
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When r >> d, r is outside the spheres, thus

V (r, θ) =
Q

4πε0

[
1

r

(
1 +

d2

r2
− 2

d

r
cos θ

)−1/2
− 1

r

(
1 +

d2

r2
+ 2

d

r
cos θ

)−1/2]

∼=
Q

4πε0

[
1

r

(
1− 2

d

r
cos θ

)−1/2
− 1

r

(
1 + 2

d

r
cos θ

)−1/2]
∼=

Q

4πε0r

[(
1 +

d

r
cos θ

)
−
(

1− d

r
cos θ

)]
=

Q

4πε0r

(
2d

r
cos θ

)
=

2dQ

4πε0

cos θ

r2

=
2dσa2

ε0

cos θ

r2

and

E(r, θ) = −∇V (r, θ) ∼= −∇
(

2dσa2

ε0

cos θ

r2

)
= −2dσa2

ε0

[
r̂
∂

∂r

(
cos θ

r2

)
+ θ̂

1

r

∂

∂θ

(
cos θ

r2

)]
=

2dσa2

ε0

[
r̂

(
2 cos θ

r3

)
+ θ̂

(
sin θ

r3

)]
=

2dσa2

ε0r3

(
2 cos θr̂ + sin θθ̂

)
(c) Find the magnetic field B (i) at r = 0 and (ii) on z-axis for |z| >> d.

Solution: .
(i) Since the currents on the spheres 1 and 2 flow in the opposite directions, the magnetic
fields induced by the two spheres are antiparallel. Therefore, they are canceled out at the mid
point and the total magnetic field vanishes at r = 0.

(ii) First, we calculate the magnetic field on z-axis generated by a circular ring current I,
using the Biot-Savart law. Because of the circular symmetry, on z axis the magnetic field has
only the z component.

B(z) =
µ0b

2I

2

1

(z2 + b2)3/2

where b is the ring radius.

�
�

�

� � � � �̂
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Second, we calculate the magnetic field on z-axis generated by a sphere. You can consider
the rotating spherical shell as a collection of continuously attached rotating rings. As shown
in the figure below, the current flowing through a thin circular strip on the sphere surface is

dI =
dQ

T
= σωa2 sin θdθ,

where dQ = 2πσa2dθ and T = 2π/ω. Thus, the magnetic field is

B(z) =
µ0

2

∫
a2 sin2 θ

[(z − a cos θ)2 + a2 sin2 θ]3/2
dI

=
1

2
µ0σωa

2

∫ π

0

sin3θ

(z2 + a2 − 2az cos θ)3/2
dθ

∼=
µ0σωa

2

2|z|3

∫ π

0

sin3 θdθ

=
2µ0σωa

2

3|z|3

�

�� �

�

� ��� ��

� � � ����

Third, the magnetic field generated by the two spheres is

B(z) =
2µ0σωa

2

3|z − d|3
− 2µ0σωa

2

3|z + d|3

=
2µ0σωa

2

3|z|3

[(
1− d

|z|

)3

−
(

1 +
d

|z|

)3
]

∼=
2µ0σωa

2

3|z|3

[(
1 + 3

d

|z|

)
−
(

1− 3
d

|z|

)]
=

4µ0σωda
2

z4

Useful formula: The magnetic field B(r) at position r generated by a steady current I is

B(r) =
µ0

4π

∫
C

Idl× (r− r′)

|r− r′|3
- Biot-Savart Law
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Consider the following cycle with a non-ideal gas such as freon.

S1 S2 S3

S

T1

T2

T3

T

a

b

c

d

e

f

(a) (6 pts) What is the energy transferred by heating in each step?

(b) (3 pts) What is the net transfer of energy by heating over one cycle? Clarify whether this
energy is gained or lost by the system.

(c) (3 pts) What is the net transfer of energy by working over one cycle? Clarify whether this
energy is gained or lost by the system.

(d) (5 pts) If this cycle is used as a heat engine, what is its efficiency?

(e) (3 pts) If you can change only S2, how could you maximize the efficiency of the heat engine?
(keeping S1 < S2 < S3)
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Consider the following cycle with a non-ideal gas such as freon.

S1 S2 S3

S

T1

T2

T3

T

a

b

c

d

e

f

(a) (6 pts) What is the energy transferred by heating in each step?

Solution: .
Remember that for a quasistatic process, Q =

∫
TdS, which is easy to compute for each step

of this curve on the TS diagram, since the integrals are each just rectangles.

Qa = −T1(S3 − S1)

Qb = 0

Qc = T3(S2 − S1)

Qd = 0

Qe = T2(S3 − S2)

Qf = 0

A positive value of Q here means energy transfered to the system by heating, so it is isother-
mally heated in steps c and e, and isothermally cooled in step a.

(b) (3 pts) What is the net transfer of energy by heating over one cycle? Clarify whether this
energy is gained or lost by the system.
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Solution: .
Obviously we just have to add up the above heat transfers. The total comes out to

Q = T3(S2 − S1) + T2(S3 − S2)− T1(S3 − S1)

= (T3 − T1)(S2 − S1) + (T2 − T1)(S3 − S2)

This is a positive value, so the system is heated by a complete cycle.

(c) (3 pts) What is the net transfer of energy by working over one cycle? Clarify whether this
energy is gained or lost by the system.

Solution: .
Because this is a cycle, the change in internal energy must be zero, which means that the
energy transfer by working must be opposite to the energy transfer by heating. Thus

W = −Q
= −(T3 − T1)(S2 − S1)− (T2 − T1)(S3 − S2)

i.e. the system does work on its environment, which makes this a kind of a heat engine.

(d) (5 pts) If this cycle is used as a heat engine, what is its efficiency?

Solution: .
The efficiency is the ratio of what you get out to what you put in. In a heat engine, you get
out work, and put in heat energy. The key is that the energy added to the system by heating
rather than the net heat, since you can’t recycle the energy lost due to heating the cool bath
(without doing extra work).

ε =
|W |
|Qadded|

=
(T3 − T1)(S2 − S1) + (T2 − T1)(S3 − S2)

Qc +Qe

=
(T3 − T1)(S2 − S1) + (T2 − T1)(S3 − S2)

T3(S2 − S1) + T2(S3 − S2)

(e) (3 pts) If you can change only S2, how could you maximize the efficiency of the heat engine?
(keeping S1 < S2 < S3)

Solution: .
To maximize the efficiency by only changing S2, we can use one of two approaches.

Firstly, we can recognize that a Carnot cycle with a maximum ratio between high and low
temperature is optimal, which in this case means that we want all the heating (and cooling)
done at T3 and T1. We can achieve this by making S2 = S3.



Solutions to problem 5 Tuesday morning 19

Alternatively, we could examine the form of our answer to the previous question. Because
T3 > T2,

T3 − T1
T3

>
T2 − T1
T2

we can maximize the efficiency by maximizing (S2−S1) at the expense of making (S3−S2) = 0.



Problem 6 Tuesday morning 20

Consider a system consisting of N distinguishable noninteracting particles. Each particle has just
3 energy eigenstates, with energies ε1 = ε2 < ε3, i.e. two of the three states have the same energy,
and the other state has a higher energy.

(a) (10 pts) What is the entropy of this system as a function of temperature?

(b) (4 pts) What is the entropy in the limit of low temperatures?
Clarify what you mean by “low temperature.”

(c) (4 pts) What is the entropy in the limit of high temperatures?
Clarify what you mean by “high temperature.”

(d) (2 pts) Is there an upper bound on the entropy of this system?
Why or why not?

Note: it is possible to solve (b), (c), and (d) correctly (and receive full credit for them) without
solving (a).
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Consider a system consisting of N distinguishable noninteracting particles. Each particle has just
3 energy eigenstates, with energies ε1 = ε2 < ε3, i.e. two of the three states have the same energy,
and the other state has a higher energy.

(a) (10 pts) What is the entropy of this system as a function of temperature?

Solution: .
Because these are distinguishable noninteracting particles, the partition function separates
such that

Ztot = ZN1

where Z1 is the partition function for a single particle. We can find this from the definition
of the total partition function:

Ztot =

all states∑
1

e−βEi

=

3∑
i1=1

· · ·
3∑

iN=1

e−β(εi1+···+εiN )

=

3∑
i1=1

· · ·
3∑

iN=1

e−βεi1 · · · e−βεiN

=

(
3∑

i1=1

e−βεi1

)
· · ·

(
3∑

iN=1

e−βεiN

)

=

(
3∑
i=1

e−βεi

)N
I always like to start with the Helmholtz free energy, which is given by

F = −kT lnZtot

= −NkT ln

(
3∑
i=1

e−βεi

)
= −NkT ln

(
2e−βε1 + e−βε3

)
= −NkT ln

(
e−βε1

(
2 + e−β(ε3−ε1)

))
= −NkT

(
−βε1 + ln

(
2 + e−β(ε3−ε1)

))
= ε1 −NkT ln

(
2 + e−β(ε3−ε1)

)
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Towards the end, I simplified the equation by writing it in terms of the energy difference,
which is all that really matters for this problem. Now we can remember that the entropy is
related to the free energy by

S = −
(
∂F

∂T

)
V,N

= Nk ln
(

2 + e−β(ε3−ε1)
)

+N
ε3 − ε1
T

e−β(ε3−ε1)

2 + e−β(ε3−ε1)

The next two questions do the answer-checking that I would normally do at this stage to
check whether this answer seems sensible. I’ll just do one additional check here, which is the
case that ε1 = ε3. This is functionally equivalent to high temperatures, but we can also think
of it as a different system that is a limiting case of this one. In this case we have a system with
three degenerate levels. Since there is no meaningful energy scale in the system, its entropy
cannot be temperature-dependent, so it is a relief that the second term exactly drops out in
this limit. The result becomes S = Nk ln 3, which is exactly what we would expect for N
particles, each of which can be in each of 3 states with equal probability. We also note that
the entropy when the energies differ is always lower than this, which is good, because those
energy differences can only reduce the number of accessible states.

(b) (4 pts) What is the entropy in the limit of low temperatures?
Clarify what you mean by “low temperature.”

Solution: .
By low temperature, I mean that β(ε3 − ε1)� 1. In this limit, the exponential terms vanish,
leaving us with

S ≈ Nk ln 2

This value makes sense, as we know that at very low temperatures only the two degenerate
ground states of each particle are accessible, so the entropy should be (using Boltzmann’s
relation S = k ln Ω) k ln 2 for each particle.

It is interesting to note that this answer may seem to contradict the Third Law of Ther-
modynamics, since the entropy doesn’t approach zero as the temperature approaches zero.
This is why careful statements of the Third Law specify that the entropy of a perfect crystal
approaches zero as the temperature approaches zero.

(c) (4 pts) What is the entropy in the limit of high temperatures?
Clarify what you mean by “high temperature.”

Solution: .
High temperature is defined by β(ε3 − ε1) � 1. In this limit, the exponentials approach 1,
and the entropy becomes

S ≈ Nk (ln 3)

So, S naturally approaches Nk ln 3, as we should expect from Boltzmann’s expression for
entropy, since at high temperature all three states are fully accessible.
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(d) (2 pts) Is there an upper bound on the entropy of this system?
Why or why not?

Solution: .
There is an upper bound of the entropy which is Nk ln 3. This makes sense because there are
a finite number of states (3 per particle). If there were an infinite number of energy states
possible, there would be no upper bound for the entropy. Because kinetic energy is always a
possibility with no upper bound, no physical material can have a finite upper bound on its
entropy.

Note: it is possible to solve (b), (c), and (d) correctly (and receive full credit for them) without
solving (a).
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Pendulum-Spring Oscillator. Consider a bob-pendulum of length L and mass m that is
attached to a block also of mass m. This block is free to move horizontally on a frictionless surface.
This block is further connected to a wall with a spring of spring constant k.
For simplicity, you may imagine the system is constructed such that the characteristic frequencies

(ωo) of the uncoupled block or pendulum are equal, i.e. ωo =
√

k
m =

√
g
L .

(a) Find the frequencies of the normal modes of this system. You may assume small oscillations
around the equilibrium position of the pendulum.

(b) Find mathematically and describe in words, and the relative motions of the normal modes of
the two masses.
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Pendulum-Spring Oscillator. Consider a bob-pendulum of length L and mass m that is
attached to a block also of mass m. This block is free to move horizontally on a frictionless surface.
This block is further connected to a wall with a spring of spring constant k.
For simplicity, you may imagine the system is constructed such that the characteristic frequencies

(ωo) of the uncoupled block or pendulum are equal, i.e. ωo =
√

k
m =

√
g
L .

(a) Find the frequencies of the normal modes of this system. You may assume small oscillations
around the equilibrium position of the pendulum.

Solution: .
Question credit: M. Shaevitz, Columbia Qual Exam Jan. 2015

Write the Lagrangian, L = T − U .
First we define a coordinate system in terms of the pendulum-mass angular displacement from
vertical, θ and the block’s linear displacement, x.

The kinetic energy (T ) is that of the block plus the pendulum’s kinetic energy terms (re-
member we need to add the linear velocity terms for the pendulum to get the total velocity
and calculate the kinetic energy). Specifically in the small oscillation approximation for a
pendulum, all kinetic motion is in the horizontal (x) plane, giving

T =
1

2
m(Lθ̇ + ẋ)2 +

1

2
mẋ2 (5)

The potential energy is the harmonic spring potential and the angular gravitational potential
of the pendulum height displacement given as,

U =
1

2
kx2 +mgL(1− cos θ) (6)

∼=
1

2
kx2 +mgL

θ2

2
(7)
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where in the last step we used the small angle approximation to Taylor expand the cosine
term, i.e. 1− cos θ ∼= θ2/2.

The system Lagrangian is then:

L = T − U (8)

=
1

2
m(Lθ̇ + ẋ)2 +

1

2
mẋ2 − 1

2
kx2 −mgLθ

2

2
(9)

We then use the Euler-Lagrange equations to get the equation for motion. With respect to θ
we get,

0 =
d

dt

(
∂L
∂θ̇

)
− ∂L
∂θ

(10)

0 = mL2θ̈ +mLẍ+mgLθ (11)

0 = L2θ̈ + Lẍ+ L2ω2
oθ (12)

Likewise with respect to x we get,

0 =
d

dt

(
∂L
∂ẋ

)
− ∂L
∂x

(13)

0 = mLθ̈ + 2mẍ+ kx (14)

0 = Lθ̈ + 2ẍ+ ω2
ox (15)

The resulting coupled harmonic oscillator equations of motion above may be solved by as-
suming an exponential form solution, θ(t) = A exp (iωt) and x(t) = B exp (iωt), which gives,

0 = −AL2ω2 −BLω2 +AL2ω2
o (16)

0 = −ALω2 − 2Bω2 +Bω2
o (17)

solving this system of equations by method of determinants we get a matrix system,(
0
0

)
=

(
−L2ω2 + L2ω2

o −Lω2

−Lω2 −2ω2 + ω2
o

)(
A
B

)
We can now solve for the eigenvalues (or characteristic frequencies) of matrix by the deter-
minant,

2L2ω4 − L2ω2ω2
o − 2L2ω2

oω
2 + L2ω4

o − L2ω4 = 0 (18)

⇒ ω4 − 3ω2
oω

2 + ω4
o = 0 (19)

Hence, the characteristic frequencies of this coupled system are ω2 = 1
2

(
3±
√

5
)
ω2
o or ω =√

1
2

(
3±
√

5
)
g
L .

(b) Find mathematically and describe in words, and the relative motions of the normal modes of
the two masses.
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Solution: .
Here we can find the normal modes by the eigenvectors. We note that the amplitude (A and
B) of oscillation are related by (equation 16):

−AL2ω2 −BLω2 +AL2ω2
o = 0 (20)

⇒ A =
B

L

(
ω2

ω2
o − ω2

)
(21)

Subbing in eigenvalues ω2 = 1
2

(
3±
√

5
)
ω2
o in the above equation we get,

A =
B

2L

√
5 + 3

(−2−
√

5)
(22)

⇒ A = − 1

L

√
5 + 1

2
B (23)

when ω2 = 1
2

(
3 +
√

5
)
ω2
o . Likewise when ω2 = 1

2

(
3−
√

5
)
ω2
o , we get

A =
1

L

√
5− 1

2
B (24)

Hence the normal modes of the system will be anti-symmetric (scissor-like motion of mass and
block) and symmetric (block and masse motion together). The general solution for the motion
will, in general, be a superposition of the these normal modes (full equations are determined
by the system initial conditions).
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Rail car jumpin’. A railroad car of mass M is initially at rest on a frictionless track. Imagine
there are N people each of mass m that are initially standing at rest on the car.

(a) Case 1: All N people run to the end of the railroad car in unison and reach a speed, relative
to the car of vp. At that point, they all jump off at once. Calculate the resulting velocity of
the car relative to the ground after they have jumped off.

(b) Case 2: N people jump off one at a time. Specifically, the people remain at rest relative to
the car, while one of them runs to the end, attains a velocity vp and jumps off. Then the next
person starts running, attains the same speed vp relative to the cart, and jumps off. This
continues until all N people have jumped off.
Derive an expression for the final velocity of the railroad car relative to the ground.

(c) Under which case will the railroad car attain a greater velocity? (case 1, case 2 or both are
equal).
Use both your equations from parts a & b, AND a qualitative physical description to support
your answer.
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Rail car jumpin’. A railroad car of mass M is initially at rest on a frictionless track. Imagine
there are N people each of mass m that are initially standing at rest on the car.

(a) Case 1: All N people run to the end of the railroad car in unison and reach a speed, relative
to the car of vp. At that point, they all jump off at once. Calculate the resulting velocity of
the car relative to the ground after they have jumped off.

Solution: .
This problem is best solved using conservation of linear momentum and choosing a reference
frame at rest with respect to the ground. Clearly, the car and people will move in opposite
direction to conserve momentum, let’s define the velocity the car moves be the positive direc-
tion, vc. Initially, the train and the people are at rest and the momentum is zero. After all
N people initially at speed vp jump off, the velocity of rail car is +vc and the speed of the N
people relative to the ground in −vp + vc. Hence, conservation of momentum gives,

pinitial = pfinal (25)

0 = Mvc +Nm(vc − vp) (26)

Solving for vc we get the resulting rail car speed relative the ground,

vc =
Nm

M +Nm
vp (27)

(b) Case 2: N people jump off one at a time. Specifically, the people remain at rest relative to
the car, while one of them runs to the end, attains a velocity vp and jumps off. Then the next
person starts running, attains the same speed vp relative to the cart, and jumps off. This
continues until all N people have jumped off.
Derive an expression for the final velocity of the railroad car relative to the ground.

Solution: .

Lets define vn to be the velocity of the car relative to the ground when there are n people of
mass m aboard. A general solution for this sequential jumping scenario, can be obtained by
applying momentum conservation to the event when the car transitions from n people aboard
to n− 1 people. Hence when there are n people aboard the initial momentum, pn is

pn = Mvn + nmvn (28)

Once the nth jumps off, the total momentum (pn−1) is that of the rail car (same expression
as above for n− 1) plus momentum of the jumper m(vn−1 − vc),

pn−1 = Mvn−1 +m(n− 1)vn−1 +m(vn−1 − vp) (29)

pn−1 = (M + nm)vn−1 −mvp (30)
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Since total momentum in conserved in each step (there are no external forces outside our
system), pfinal = pn = pn−1 = pinitial = 0, and we can can evaluate for the resulting speed
(vn−1) added the car after each jump,

pn = pn−1 (31)

Mvn + nmvn = (M + nm)vn−1 −mvp (32)

⇒ 0 = (M + nm)vn−1 −mvp (33)

vn−1 =
mvp

M + nm
(34)

Hence the final velocity of the rail car (vc) is just the summation of the velocities given to the
cart (relative the ground) by each of the N jumpers, specifically

vc =

N∑
n=1

mvp
M + nm

(35)

Note: alternatively, one can arrive at a solution by analyzing the cases of 1, 2 and 3 jumpers
separately and rigorously using the principle of mathematical induction to prove the case
for N jumpers. If doing it this way, you may likely arrive at the mathematically equivalent
expression:

vc =

N−1∑
n=0

mvp
M + (N − n)m

(36)

(c) Under which case will the railroad car attain a greater velocity? (case 1, case 2 or both are
equal).
Use both your equations from parts a & b, AND a qualitative physical description to support
your answer.

Solution: .
In Case 2 the rail cars attains the larger final speed. Mathematically this can be seen by
inspection of,

N∑
n=1

mvp
M + nm

>
Nm

M +Nm
vp (37)

since for small n < N the denominator in case 2 is smaller. The physical explanation is that
when the jump off one-at-a-time, each successive person is imparting a momentum impulse on
a slightly lighter cart, which corresponds to a faster cart recoil. (In case 1, the all N people
have to impart an impulse which has to push the cart and all N people, hence the cart recoil
is less than case 2)


