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OSU Physics Department
Comprehensive Examination #123

Thursday, September 24 & Friday, September 25, 2015

Fall 2015 Comprehensive Examination

PARTS 1, 2, 3 & 4

General Instructions

This Fall 2015 Comprehensive Examination consists of four separate parts of two problems each.
Each problem caries equal weight (20 points each). The first part (Quantum Mechanics) is handed
out at 9:00 am on Thursday, September 24 , and lasts three hours. The second part (Electricity
and Magnetism) will be handed out at 1:00 pm on the same day and will also last three hours. The
third (Statistical Mechanics) and fourth (Classical Mechanics) parts will be administered on Friday,
September 25, at 9:00 am and 1:00 pm, respectively. Work carefully, indicate your reasoning, and
display your work clearly. Even if you do not complete a problem, it might be possible to obtain
partial credit—especially if your understanding is manifest. Use no scratch paper; do all work in
the bluebooks, work each problem in its own numbered bluebook, and be certain that your chosen
student letter (but not your name) is inside the back cover of every booklet. Be sure to make note
of your student letter for use in the remaining parts of the examination.

If something is omitted from the statement of the problem or you feel there are ambiguities,
please get up and ask your question quietly and privately, so as not to disturb the others. Put
all materials, books, and papers on the floor, except the exam, bluebooks and the collection of
formulas and data distributed with the exam. Calculators are not allowed except when a numerical
answer is required—calculators will then be provided by the person proctoring the exam. Use the
last pages of your bluebooks for “scratch” work, separated by at least one empty page from your
solutions. “Scratch” work will not be graded.

If you submit blue books for any given section, that section will be graded as part of your
cumulative score. Unless you are taking the exam for practice, all sections not previously passed
need to be attempted and submitted.



Problem 1 Thursday morning 2

A quantum mechanical particle of mass m moves in the potential:

V (z) =

{
mgz, if z > 0.

+∞, if z < 0.

where z is the position coordinate (height) and g is the acceleration due to gravity.

A trial wavefunction

ψ(z) =

{
Cze−az, if z > 0.

0, if z < 0.

has the correct qualitative shape to be the ground state wavefunction, although it does not exactly
describe the ground state wavefunction.

(a) List three features of ψ(z) that make this function a physically reasonable choice.

(b) Use ψ(z) and the variational principle to estimate the ground state energy of the particle in
terms of ~, m and g.
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Problem 2 Thursday morning 4

Positronium is a bound state of an electron
(
s1 = 1

2

)
and a positron

(
s2 = 1

2

)
. The Hamiltonian

for the system in a magnetic field B can be written as

H = Ho +
A

~2
(S1 · S2) +

µBB

~
(S1,z − S2,z)

where S1 and S2 are spin operators for the electron and positron respectively. For example, the
eigenstates of S1,z are |↑1〉 and |↓1〉 such that

S1,z |↑1〉 = +
~
2
|↑1〉

S1,z |↓1〉 = −~
2
|↓1〉

(a) At B = 0 there is an energy difference between different spin configurations of positronium.
Spectroscopy experiments have measured this splitting to be 200 GHz. Find the value of A
in units of Joules or electron Volts.

(b) Consider the spin configurations of positronium that are energy eigenstates when B > 0. Find
the energies of these states (relative to Eo) when B > 0. Express your answers in terms of A,
~, µB and B.

Useful information: ~ ∼= 10−34J · s
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Problem 3 Thursday afternoon 6

A rigid metal wire frame in the plane of the paper (yz plane) is released from rest and falls
to the ground. It is close to earth, so the gravitational acceleration, g, is constant. In a second
experiment, there is a constant magnetic field in the positive x̂ direction (out of the page) in the
semi-infinite halfspace z > 0. The situation is depicted below.

Parameters that may be relevant are:
B0, magnitude of the magnetic field
w, width of the frame
`, length of frame
m, mass of the frame
R, electrical resistance of the frame
g, acceleration due to gravity

(a) Describe, qualitatively but carefully, how and why the motion of the wire frame is different
in experiment 2 from the motion in experiment 1. Be sure to discuss the situations where the
frame is entirely outside the field region, partially in the field region and completely within
the field region.

(b) Would your answer to (a) be different if the field were in the −x̂ direction? Why or why not?

(c) Now be quantitative.

(i) Define the forces on the frame in experiment 2.

(ii) Suppose the frame is released from rest at t = 0 with its bottom horizontal wire just
at the border of the field region (z = 0). Find the velocity of the frame as a function of time.

(iii) Show that the difference in distance fallen between experiment 1 and experiment 2

in a time t is |∆z| = B2
0w

2g
6mR t3 in the short-time limit of

B2
0w

2

mR t� 1.



Comprehensive Exam, Fall 2015 E&M (Solution)  
 

 
 
(a) In experiment #1, the only force acting is the constant force mg due to gravity, and the frame 

falls to earth just as a point mass m.  That is, its velocity increases linearly, displacement 

quadratically in time.  vB0 t   v0  gt; zB0 t   z0  v0t 
1

2
gt 2 .  The right-handed system of 

axes above is set up so that increasing z is in the direction of travel. 
 
• In experiment #2, the situation is the same as in experiment #1 while the frame is 
completely outside the field region i.e. until the lowest wire of the frame reaches z = 0.   
 

• While the frame enters the region with the magnetic field, the magnetic flux  

threading the metal frame increases.  This changing  induces an electromotive force 
  d dt that generates a current in the wire frame that produces a field in the direction 
opposite to the applied field by Lenz' law. If the applied field is in the +x direction, the 
induced current is clockwise, inducing an opposing magnetic field in the –x direction. The 
induced current is therefore in theŷ  direction in the lower (horizontal) arm of the frame.  
With a current in the wire, the moving charges in the lowest part of the frame experience a 
force (upward).  So the frame accelerates less than if 

there were no field.*   
* In the left (right) vertical arm of the frame, the magnetic force tends to cause the frame to move in the –y (+y) 
direction, producing no net motion in the horizontal direction, but rather a slight constriction, which we ignore 
if the frame is rigid enough. 
 
• Once the frame is entirely within the magnetic field region, the magnetic flux no longer 
changes, and there is no longer any effect of the magnetic field.  The frame continues to 
accelerate with acceleration g from whatever velocity it had reached. 

 
(b) Field reversal has no effect – this experiment cannot distinguish the field direction.  If the 

field is reversed, then the induced current is reversed, and the magnetic force on the lower 
arm is is the same (upward), so the frame still 

accelerates less than in experiment #1. 
 

	

w 

Expt #2

	 I

y x 

z 

F
grav

=mg 

F
mag,l

=BIw 

F
mag,

=BIz F
mag,

=BIz 



(c) Quantitative: 
(i) Forces 

Gravitational force                                  
 

Magnetic force on a straight, current-carrying wire of length w is 
 

Magnetic force (on lower wire)               

Net horizontal magnetic force (on vertical wires) is zero as discussed in (a) 
 
Find the current.  In the field region, the field is perpendicular to the frame, so 

, with w the width of the frame and z the position of the 

lower wire of the frame.    

The induced EMF is   d
dt

 B0w
dz

dt
 

 
The modulus reminds that it is the magnitude that is important; the current direction is 
determined by Lenz' law and is different in the 4 sections of the frame.  The induced current 

magnitude is I  
R
 B0w

R

dz

dt
 where the modulus has been removed and dz/dt is assumed 

positive (which is why the axes are set up with z downwards). 
 
Use value of I in magnetic force expression for the lower wire: 

 

 
(ii) Newton 

                          

 

 
with solution satisfying vz(0) = 0, 

  vz t   mg


1 e


m

t







  

 
 
 
 



(iii) Position: 
Integrate, and note z(0) = 0: 

vz t ' dt '
0

t

 
dz

dt '0

t

 dt '  dz
0

t

  z t   z 0 

z t   mg


1 e


m

t '







dt '

0

t

  mg


t  m










2

g e


m
t
1











 

 
 

Assume 

m

t  B0
2w2

mR
t 1 

 

z t   mg


t  m










2

g 1  
m

t  1

2


m

t








2

 1

6


m

t








3

 1










z t   1

2
gt 2 

1

6


m







gt 3









. 

 

Field free with same initial conditions:  zB0 t   1

2
gt 2  

Subtract to find leading o z t   z t   zB0 t   
 

z t    
6m

gt 3   B0
2w2

6mR
gt 3

 
The magnitude is the required value, and the negative sign means that the frame falls less 
distance in time t when the B field is present, consistent with the discussion in (a) above.

 

 
 



Problem 4 Thursday afternoon 8

Propagation of electromagnetic waves:

(a) Use the Maxwell equations to show that in an insulator (linear, homogenous, dielectric per-
mittivity ε and magnetic permeability µ), monochromatic electromagnetic waves with electric

field ~E = x̂E0e
−i(wt−kz) propagate with a phase velocity v where 1

v2 = µε.

(b) Now let the material have an electrical conductivity σ, so that it supports a current density
~J = σ ~E, and you may assume that any free charge density ρ = 0. Extend the analysis above
to show that in this case, the wave propagation is governed by the dispersion relation

k2 = µε
(

1 + i
σ

εω

)
ω2

(c) Show that a consequence of the non-zero conductivity is that the amplitude of the electric
field is attenuated and find the attenuation length in the limit of small conductivity σ/εω � 1.

(d) Show that another consequence of the non-zero conductivity is that the electric and magnetic
fields of the electromagnetic wave are not in phase (as they are in a pure insulator) and that
the phase difference between them is φ = tan−1 (σ/2εω) in the same small conductivity limit.



Comprehensive Exam, Fall 2015 E&M (Solution) 
 
(a) The Maxwell equations are (equation sheet): 

 (1)      where, in a linear medium,  . 

In the absence of free charge and current   f  0; J f  0            (2) 

and in a homogeneous medium where  and µ do not depend on position,  

 . (3) 

Take the curl of the curl equations: 

 (4) 

Use standard vector identities (equation sheet) on the LHS, and use the relation of the curl of one 
field to the time derivative of the other (Eqs 3) on the RHS:

 
  (5) 

Use zero divergence of both fields (3), rearrange to get decoupled wave equations for E and B: 

  (6) 

 

Now assume monochromatic waves  and use in (6) to find 

 or   k2

 2
.         (7) 

In  the condition of constant phase d dt  kdz  0 identifies the phase 

velocity v  dz

dt
 

k
 .                       (8) 

(8) in (7) gives the required result: 
1

v2
  .   (9) 

 
(b) With conductivity,  but free charge density   0 .   



  (10) 

 
Same principle as in (a), but now 

 

and with zero divergence: 

  (11) 

Use monochromatic form  

 
 
So now 
k 2

 2
  1 i










 which gives the result required: k2   1 i










 2 .       (12) 

 
(c) To show the wave is attenuated, notice that with  real, k must be complex: 

k  kr  iki  , so the E field has the form  

            (13) 
and the wave is attenuated with 1/e attenuation length (you can use another if you like, just 
define it) 
 1/ ki             (13) 
so we must find the imaginary part of k in the low conductivity limit. 
 

 



k 2

2
  1 i












k   1 i











1/2

  1 i


2








ki 



2

 

Hence 
 

1 



2

            (14) 

 
(d) The magnetic field B obeys the same type of equations as the E field, so it propagates with 

the same velocity (Eqs 11).   

So we have .  

Because ,  

then  

 
and therefore  

   

  

   We have just shown that v is complex (Eqn 12):  
1

v
  1 i












1/2

 

Plugging in, we see that the amplitude of B is complex and therefore introduces an additional 
phase  relative to E: 

  

 

With tan  
2

 

 



Problem 5 Friday morning 10

Linear polymer chain
We model the elasticity of fibrous proteins with a linear polymer chain. Consider a single linear
polymer chain composed of units each of which can be in a short state a of length la or a long state
b of length lb (lb > la). If a pulling force f is applied to the chain, some a units are converted into
b units and the chain will lengthen. Neighboring units in the chain are independent of each other.

�� ��

�

� � ���� � ����

Let N = Na +Nb (� 1) be the total number of units, with Na and Nb of the two types, and µ be
a single unit energy (either a or b), that is, an energy required to add a single unit to the system.

(a) The fundamental thermodynamics equation of the energy conservation is expressed as

dE = TdS − dW,

where E is the internal energy of the system, T is its temperature, S is the entropy, and W
is the work done by the system. Elaborating dW , rewrite the equation for the two different
sets of independent variables:

(i) S, l, and N , where l = laNa + lbNb is the length of the chain

(ii) S, Na, and N

(b) We let qa and qb represent the partition functions of one a and one b unit, respectively. What
is the canonical ensemble partition function Ω(Na, N, T ) of the chain in terms of qa and qb?

(c) Using your answers in (a) and (b), find the relation:

f(lb − la)

kBT
= ln

(
1− r
r

qa
qb

)
,

where r = Na/N and f is the pulling force. Note that Helmholtz free energy is A = E−TS =
−kBT ln Ω.

(d) Find the ratio Na/Nb at zero force, f = 0.

(e) Show that l and r are related by

1− r =
l −Nla
N(lb − la)

and that, for a small force f , the change in the length of the chain is proportional to the force:
f = α∆l. What is the spring constant α?

(f) Find r and l when f →∞ using the equation in (c) and justify your answer.

Useful formula: lnn! ∼= n lnn− n for n� 1



Solutions to problem 5 Friday morning 11

Linear polymer chain
We model the elasticity of fibrous proteins with a linear polymer chain. Consider a single linear
polymer chain composed of units each of which can be in a short state a of length la or a long state
b of length lb (lb > la). If a pulling force f is applied to the chain, some a units are converted into
b units and the chain will lengthen. Neighboring units in the chain are independent of each other.

�� ��

�

� � ���� � ����

Let N = Na +Nb (� 1) be the total number of units, with Na and Nb of the two types, and µ be
a single unit energy (either a or b), that is, an energy required to add a single unit to the system.

(a) The fundamental thermodynamics equation of the energy conservation is expressed as

dE = TdS − dW,

where E is the internal energy of the system, T is its temperature, S is the entropy, and W
is the work done by the system. Elaborating dW , rewrite the equation for the two different
sets of independent variables:

(i) S, l, and N , where l = laNa + lbNb is the length of the chain

(ii) S, Na, and N

Solution: .
(i) The energy conservation yields

dE = TdS + fdl + µdN (1)

(ii) Because dl = ladNa + lbdNb = ladNa + lb(dN − dNa) = −(lb − la)Na + lbdN ,

dE = TdS − f(lb − la)dNa + (µ+ flb)dN (2)

(b) We let qa and qb represent the partition functions of one a and one b unit, respectively. What
is the canonical ensemble partition function Ω(Na, N, T ) of the chain in terms of qa and qb?

Solution: .
The number of ways of distributing Na a units among a total of N possible positions in the
chain is

N !

Na!(N −Na)!
; (3)

therefore, the canonical ensemble partition function is

Ω(Na, N, T ) =
N !

Na!(N −Na)!
qNa
a qN−Na

b . (4)



Solutions to problem 5 Friday morning 12

(c) Using your answers in (a) and (b), find the relation:

f(lb − la)

kBT
= ln

(
1− r
r

qa
qb

)
,

where r = Na/N and f is the pulling force. Note that Helmholtz free energy is A = E−TS =
−kBT ln Ω.

Solution: .
Because an infinitesimal change in Helmholtz free energy is expressed as

dA = −SdT − dW = −SdT − f(lb − la)dNa + (µ+ flb)dN, (5)

we can write (
∂A

∂Na

)
N,T

= −f(lb − la). (6)

Furthermore, using A = −kBT ln Ω and lnn! ∼= n lnn− n, we get(
∂A

∂Na

)
N,T

= −kBT
(
∂ ln Ω

∂Na

)
N,T

= −kBT
∂

∂Na
[lnN !− lnNa!− ln(N −Na)! +Na ln qa + (N −Na) ln qb]

∼= −kBT
∂

∂Na
[−Na lnNa − (N −Na) ln(N −Na) +Na ln qa + (N −Na) ln qb]

= −kBT (− lnNa + ln(N −Na) + ln qa − ln qb)

= −kBT ln

(
N −Na

Na

qa
qb

)
= −kBT ln

(
1− r
r

qa
qb

)
(7)

From Eqs. 6 and 7, we obtain

f(lb − la)

kBT
= ln

(
1− r
r

qa
qb

)
. (8)

(d) Find the ratio Na/Nb at zero force, f = 0.

Solution: .
When f = 0,

ln

(
1− r
r

qa
qb

)
= 0→ 1− r

r

qa
qb

= 1, (9)

where
1− r
r

=
N −Na

Na
=
Nb

Na
. (10)

Thus, the stability ratio is
Na

Nb
=
qa
qb
. (11)



Solutions to problem 5 Friday morning 13

(e) Show that l and r are related by

1− r =
l −Nla
N(lb − la)

and that, for a small force f , the change in the length of the chain is proportional to the force:
f = α∆l. What is the spring constant α?

Solution: .
Because l = Nala + (N −Na)lb,

l −Nala = N(1− r)lb → 1− r =
l −Nla
N(lb − la)

. (12)

For a small force f ,

1− r
r

qa
qb
∼= 1→ 1− r

r

qa
qb

= 1 + x where x� 1. (13)

We define r = r0 at f = 0 such as

1− r0
r0

qa
qb

= 1→ 1

r0
= 1 +

qa
qb

(14)

and ∆r as a small deviation for r0, r = r0 + ∆r. Then,

x =

(
1

r
− 1

)
qa
qb
− 1

=

(
1

r0 + ∆r
− 1

)
qa
qb
− 1

∼=
[

1

r0

(
1− ∆r

r0

)
− 1

]
qa
qb
− 1

=

(
1

r0
− 1

)
qa
qb
− 1− ∆r

r20

qa
qb

= −∆r

r20

qa
qb
. (15)

From Eq. 12, we can obtain the relation between ∆r and the infinitesimal change in the
length, ∆l:

−∆r =
1

N(lb − la)
∆l (16)

Inserting Eq.16 into Eq. 15, we get

x =
1

r20

qa
qb

1

N(lb − la)
∆l =

1

N(lb − la)

qa
qb

(
1 +

qa
qb

)2

∆l. (17)
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From Eqs.8 and 17, we obtain the relation between f and ∆l:

f =
kBT

lb − la
ln

(
1− r
r

qa
qb

)
=

kBT

lb − la
ln (1 + x)

∼=
kBT

lb − la
x

=
kBT

N(lb − la)2
qa
qb

(
1 +

qa
qb

)2

∆l

= α∆l, (18)

where the spring constant,

α =
kBT

N(lb − la)2
qa
qb

(
1 +

qa
qb

)2

(19)

(f) Find r and l when f →∞ using the equation in (c) and justify your answer.

Solution: .
When f →∞, r → 0; therefore, from the r and l relation in (e),

l = Nla +N(lb − la) = Nlb, (20)

that is, all units are in the longer b state. This is reasonable because, if a very strong force is
applied, the polymer chain should be stretched to the maximum length.

Useful formula: lnn! ∼= n lnn− n for n� 1
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Maxwell’s demon
Consider a chamber filled with an ideal monoatomic gas (temperature T , volume V , pressure P ,
number of atoms N � 1). Suppose that a partition is placed across the middle of the chamber
separating the two sides into left and right. Maxwell imagined a trap door in the partition with
an imaginary creature poised at the door who is observing the molecules. The demon only opens
the door if a molecule is approaching the trap door from the right. Assume that the trap door
is massless and no energy is required to operate the door. This would result in all the molecules
ending up on the left side.

(a) It appears that this thought experiment might violate the Second law of thermodynamics.
Explain why a physicist might mistakenly claim the Second law is violated.

(b) Find the temperature, energy, and pressure of the ideal gas in the final state.

(c) What is the work done by the ideal gas during the process?

(d) What is the change in the entropy of the ideal gas during the process?

(e) We now consider the entropy associated with information. The demon acquires information
about the state of the system via measurements on the atoms. More information means
more entropy (for example, blank computer memory consists of all zeros, while full computer
memory consists of zeros and ones).

(i) First, we consider a case when the demon makes a decision on one atom and assume only
two possible measurement outcomes (Obviously, this is the simplest case.), where w1 and w2

are the probabilities of getting outcomes 1 and 2, respectively. Let S1 and S2 be the entropies
associated with outcomes 1 and 2. Show that a lower bound on S1 and S2 is given by

e−S1/kB + e−S2/kB ≤ 1.

Note: When wi is the probability of getting outcome i and Si is the entropy associated with
the outcome, entropy and probability has an inequality relation, Si ≥ −kB lnwi.

(ii) The average entropy cost of measurement per cycle is

Sa = w1S1 + w2S2.

Show that for any values of S1 and S2 that satisfy the lower-bound constraint, the resulting
value for Sa is no less than the entropy decrease that violates the Second Law, and hence, on
average, the entropy increase due to measurement is no less than the entropy decrease of the
ideal gas.
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Maxwell’s demon
Consider a chamber filled with an ideal monoatomic gas (temperature T , volume V , pressure P ,
number of atoms N � 1). Suppose that a partition is placed across the middle of the chamber
separating the two sides into left and right. Maxwell imagined a trap door in the partition with
an imaginary creature poised at the door who is observing the molecules. The demon only opens
the door if a molecule is approaching the trap door from the right. Assume that the trap door
is massless and no energy is required to operate the door. This would result in all the molecules
ending up on the left side.

(a) It appears that this thought experiment might violate the Second law of thermodynamics.
Explain why a physicist might mistakenly claim the Second law is violated.

Solution: .
In the final state, the ideal gas occupies a reduced volume and therefore the gas becomes more
ordered. It appears that the Second law is violated.

(b) Find the temperature, energy, and pressure of the ideal gas in the final state.

Solution: .
(i) There is no change in temperature during the process because the temperature of an ideal
gas is determined only by its kinetic energy and the kinetic energy of each atom is conserved
during the process, that is, Tf = T .

(ii) For an ideal monoatomic gas the entire energy is kinetic and the mean kinetic energy of
an atom is 3

2kBT . Therefore, the energy of the ideal gas is

Ef = Ei =
3

2
NkBT

(iii) The volume of the final state is V/2; therefore, the pressure of the final state should be
doubled,

Pf =
NkBTf
Vf

= 2
NkBT

V
= 2P.

(c) What is the work done by the ideal gas during the process?
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Solution: .
the work done by the ideal gas (∆W ) is

∆W =

∫ Vf

Vi

PdV =

∫ Vf

Vi

NkBT

V
dV = NkBT ln

Vf
Vi

= −NkBT ln 2. (21)

(d) What is the change in the entropy of the ideal gas during the process?

Solution: .
Because there is no change in the energy of the ideal gas, the heat absorbed by the ideal (∆Q)
gas must be equal to the work done by the ideal gas (∆W ),

∆Q = ∆W = −NkBT ln 2; (22)

therefore, the change in entropy is

∆S =

∫ f

i

1

T
dQ =

∆Q

T
= −NkB ln 2. (23)

Entropy of the system decreases during the process!

(e) We now consider the entropy associated with information. The demon acquires information
about the state of the system via measurements on the atoms. More information means
more entropy (for example, blank computer memory consists of all zeros, while full computer
memory consists of zeros and ones).

(i) First, we consider a case when the demon makes a decision on one atom and assume only
two possible measurement outcomes (Obviously, this is the simplest case.), where w1 and w2

are the probabilities of getting outcomes 1 and 2, respectively. Let S1 and S2 be the entropies
associated with outcomes 1 and 2. Show that a lower bound on S1 and S2 is given by

e−S1/kB + e−S2/kB ≤ 1.

Note: When wi is the probability of getting outcome i and Si is the entropy associated with
the outcome, entropy and probability has an inequality relation, Si ≥ −kB lnwi.

Solution: .
Lower bounds for S1 and S2 are given by

S1 ≥ −kB lnw1 and S2 ≥ −kB lnw2 (24)

which leads to
w1 ≥ e−S1/kB and w2 ≥ e−S2/kB (25)

Using w1 + w2 = 1, we obtain the lower-bound constraint,

e−S1/kB + e−S2/kB ≤ w1 + w2 = 1. (26)
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(ii) The average entropy cost of measurement per cycle is

Sa = w1S1 + w2S2.

Show that for any values of S1 and S2 that satisfy the lower-bound constraint, the resulting
value for Sa is no less than the entropy decrease that violates the Second Law, and hence, on
average, the entropy increase due to measurement is no less than the entropy decrease of the
ideal gas.

Solution: .
If we choose S1 = S2 = kB ln 2, these satisfy the lower-bound constraint:

e−S1/kB + e−S2/kB = 2e− ln 2 = 1 ≤ 1 (27)

and then
Sa = w1S1 + w2S2 = kB ln 2. (28)

Thus, the entropy increase due to measurements on N atoms, NSa = NkB ln 2, is no less
than the entropy decrease in the ideal gas, NkB ln 2. Hew! The Second law is saved.
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A swing of mass m is made from an arc section of radius of R is suspended from a pivot by
(massless) ropes at both ends. A hoop, also of mass m, and radius a rolls without slipping on the
swing. The swing and the hoop move without dissipative friction subject to a constant gravitational
force Fg = −mg.

(a) Find the differential equations of motions that describe the angular displacement of the hoop
and the swing. You may assume a/R� 1 and small displacements from equilibrium.

(b) Find all possible frequencies of oscillation of the system for small displacements from equi-
librium.
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A swing of mass m is made from an arc section of radius of R is suspended from a pivot by
(massless) ropes at both ends. A hoop, also of mass m, and radius a rolls without slipping on the
swing. The swing and the hoop move without dissipative friction subject to a constant gravitational
force Fg = −mg.

(a) Find the differential equations of motions that describe the angular displacement of the hoop
and the swing. You may assume a/R� 1 and small displacements from equilibrium.

Solution: .
Question Credit: 2014 Columbia University Comprehensive Exam

The angular displacement of the system is in terms of two angles that represent the angular
displacements of the swing and hoop from equilibrium, φ and θ, respectively. The rolling of
the hoop can be described by an angular velocity ωhoop which will be taken to be positive for
the hoop rolling counter-clockwise. The rolling of the hoop depends on the difference between
φ̇ and θ̇ since if θ and φ increase or decrease together, the hoop remains in the same position

with respect to the swing. Then, the rolling without slipping condition is aωhoop = R
(
φ̇− θ̇

)
.

The kinetic energy (e.g. 1
2Iθ̇

2)of the system is then the sum of the swinging energy of the
swing and hoop(about it center of mass (R− a), and the rolling energy of the hoop, i.e.

T =
1

2
m
(
R2φ̇2 + (R− a)

2
θ̇2
)

+
1

2
Ihoopω

2 (29)

with Ihoop = ma2. Substituting, a2ω2 = R2
(
φ̇− θ̇

)2
and taking R− a ∼= R

T = mR2
(
φ̇2 + θ̇2 − θ̇φ̇

)
(30)

By the circular arc symmetry, the potential energy can be expressed in terms of a simple
pendulum for the swing the hoop(i.e. the height potential above the center mass of the
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hoop).

U = mgR (1− cosφ) +mg (R− a) (1− cos θ) (31)

Write the Lagrangian, L = T − U .
The resulting Lagrangian is then (under the approximation, R− a ∼= R),

L = T − U (32)

= mR2
(
φ̇2 + θ̇2 − θ̇φ̇

)
−mgR (2− cosφ− cos θ) (33)

To get the differential equations of motion we invoke the Euler-Lagrange equations. With
respect to φ we get,

0 =
∂L
∂φ
− d

dt

(
∂L
∂φ̇

)
(34)

0 = mR2
(

2φ̈− θ̈
)

+mgR sinφ (35)

With respect to θ we get,

0 =
∂L
∂θ
− d

dt

(
∂L
∂θ̇

)
(36)

0 = mR2
(

2θ̈ − φ̈
)

+mgR sin θ (37)

(b) Find all possible frequencies of oscillation of the system for small displacements from equi-
librium.

Solution: .
For small oscillations (and a/R� 1), the standard Taylor series approximation (as is the case
of the simple pendulum) applies, i.e. sin θ ∼= θ and sinφ ∼= φ. The resulting coupled harmonic
oscillator equations of motion are:

0 = 2φ̈− θ̈ +
g

R
φ (38)

0 = 2θ̈ − φ̈+
g

R
θ (39)
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Assume the solution may be obtained with an exponential of form θ(t) = A1 exp iωt and
φ(t) = A2 exp iωt, and we may solve the coupled ODEs,

− g
R
A1 = −ω2(2A1 −A2) (40)

− g
R
A2 = −ω2(2A2 −A1) (41)

solving by method of determinants let’s define α = g/(ω2R) to give a matrix

C − αI =

(
2− g/(Rω2) −1

−1 2− g/(Rω2)

)
We can now solve for the eigenvalues (or characteristic frequencies) of matrix C by,

det (C − αI) = 3− 4α+ α2 = (α− 3) (α− 1) = 0 (42)

(43)

Hence characteristic frequencies are ω1 =
√

g
R and ω2 =

√
g
3R
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Imagine there is a billiard ball (solid sphere) of mass M and radius R. As illustrated the ball is
stationary until hit with a pool cue where is acquires an instantaneous linear velocity, vi. You may
assume the shot was well-centered, such that the ball initially has no angular momentum imparted,
and slips over the table. Immediately after, the ball experiences a static coefficient of friction µ
with respect to the table.

(a) Calculate the moment of inertia of the rolling billiard ball about its center.
Please show all work.
Hint: consider the moment of inertia of a disc ( 1

2MR2) or a cylindrical shell (MR2)

(b) What is the linear velocity of the ball (vf ) when the ball first begins to roll without slipping?
Show all work.

(c) What is the numerical fraction of the total initial kinetic energy that gets transferred into
heat by the time t = t′ (i.e. when the ball rolls without slipping)?

(d) How far does the billiard ball travel before it starts rolling without slipping?
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Imagine there is a billiard ball (solid sphere) of mass M and radius R. As illustrated the ball is
stationary until hit with a pool cue where is acquires an instantaneous linear velocity, vi. You may
assume the shot was well-centered, such that the ball initially has no angular momentum imparted,
and slips over the table. Immediately after, the ball experiences a static coefficient of friction µ
with respect to the table.

(a) Calculate the moment of inertia of the rolling billiard ball about its center.
Please show all work.
Hint: consider the moment of inertia of a disc ( 1

2MR2) or a cylindrical shell (MR2)

Solution: .

One approach is to divide the sphere into infinitesimally small discs with axes in the x-direction
(alternatively one can divide into cylindrical shells). Let the disc thickness be dz and radii
r. The center of each disc will then have radius r =

√
R2 − x2 be located at distance x from

the origin. The resulting differential inertia is then dI = 1
2r

2dm (using the hint for the disc),
where dm = ρπr2dx and ρ is the mass density of a sphere. Hence we get,

I =
1

2

∫ R

−R
ρπr4dx (44)

=
1

2

∫ R

−R
ρπ(R2 − x2)2dx (45)

=
1

2

∫ R

−R
ρπ(R4 − 2R2x2 + x2)dx (46)

= ρπR5

(
1− 2

3
+

1

5

)
(47)

Recall the mass density of sphere is ρ = M/V = M/4
3πR

3. Combining with the above
expression we get,

I =
2

5
MR2 (48)

(b) What is the linear velocity of the ball (vf ) when the ball first begins to roll without slipping?
Show all work.
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Solution: .
(question clarification: The phrase Immediately after, the ball experiences a static coefficient
of friction µ was misleading because the ball is now continuously moving and so only kinetic
friction matters, the type friction immediately after cannot be defined as kinetic or static.
Nonetheless, the key to this problem is to recognize the final result is independent of µ, and
depends only on the final condition of rolling without slipping.)

There are many way of the solving this problem (torques, angular momentum, etc). It is crit-
ical to recognize that the solution is independent of friction and instead depends on the final
angular velocity meets the condition of spinning w/o slipping, i.e. ω = vf/R. The ball will
decelerate as the angular velocity accelerates from the point contact of friction. At some point
later, the the angular speed and rolling speed will match; the time and distance it take to
meeting this condition vary with µ, but the final velocity and energy lost are independent of µ.

Method 1 - angular momentum imparted about single point contact The only
unbalanced force in this problem is friction which acts horizontally through point of contact
and hence external torque about any axis of rotation passing through the table and normal
to the plain of motion, is zero. About the ball’s axis, the initial angular momentum of the
slipping ball is just, Li = MviR. The final angular momentum includes the slipping and
rolling components, i.e.

Lf = MRvf + Iω (49)

= MRvf +
2

5
MR2vf/R (50)

=
7

5
MRvf (51)

Solving for the final velocity of ball vf we get

MviR =
7

5
MRvf (52)

vf =
5

7
vi (53)

The final velocity of ball is vf = 5
7vi.

Method 2: kinematics and torques The horizontal deceleration of the ball comes from
friction and acts in horizontal direction opposing motion, a = F/M = µg and so the velocity
at given time t is simply v(t) = vi−µgt. Moreover, this force will produce an opposing torque
on the ball about its center since the friction only happens at the single point of contact.
Since vf = ωR = αtR, where α is the angular acceleration we can re-write the final velocity
as,

vf = vi − µgt = αtR (54)

The anti-clockwise angular acceleration of the ball about its center given by the torque,
τ = R×F = Iα or simply RµgM = 2

5MR2α. Hence the ball experiences angular acceleration
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α = 5µg/2R or,

vi − µgt = 5µgt/2 (55)

µgt =
2

7
vi (56)

or the final velocity vf = vi − 2
7vi = 5

7vi.

(c) What is the numerical fraction of the total initial kinetic energy that gets transferred into
heat by the time t = t′ (i.e. when the ball rolls without slipping)?

Solution: .
Initially ball has linear and kinetic energy, i.e.

KEinitial =
1

2
Mv2 (57)

Long after the collision, both balls have linear and angular kinetic energy, hence the same
derivation above applies for each ball, i.e.

KEfinal =
1

2

2

5
Mv2f +

1

2
Mv2f (58)

=
7

10
M

((
5

7
vi

)2
)

(59)

=
7

10
Mv2i

25

49
(60)

=
5

14
Mv2i (61)

Therefore the following fraction of initial energy must have been lost to heat,

KEinitial −KEfinal

KEinitial
= 1− 2× 5

14
(62)

=
2

7
(63)

(d) How far does the billiard ball travel before it starts rolling without slipping?

Solution: .
The ball decelerates due to friction at a rate of a = F/M = −µg. Recalling the basic kinematic
equations for the ball’s displacement D we get,

v2f = v2i + 2aD (64)

(
5

7
vi)

2 = v2i − 2µgD (65)

D =
12

49

v2i
µg

(66)




