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OSU Physics Department
Comprehensive Examination #122

Monday, March 30, Tuesday, March 31, 2015

Spring 2015 Comprehensive Examination

PARTS 1, 2, 3 & 4

General Instructions

This Spring 2015 Comprehensive Examination consists of eight problems of equal weight (20
points each). It has four parts. The first part (Problems 1-2) is handed out at 9:00 am on Monday,
March 30, and lasts three hours. The second part (Problems 3-4) will be handed out at 1:00 pm
on the same day and will also last three hours. The third and fourth parts will be administered on
Tuesday, March 31, at 9:00 am and 1:00 pm, respectively. Work carefully, indicate your reasoning,
and display your work clearly. Even if you do not complete a problem, it might be possible to
obtain partial credit—especially if your understanding is manifest. Use no scratch paper; do all
work in the bluebooks, work each problem in its own numbered bluebook, and be certain that your
chosen student letter (but not your name) is inside the back cover of every booklet. Be sure to
make note of your student letter for use in the remaining parts of the examination.

If something is omitted from the statement of the problem or you feel there are ambiguities,
please get up and ask your question quietly and privately, so as not to disturb the others. Put all
materials, books, and papers on the floor, except the exam, bluebooks and the collection of formulas
and data distributed with the exam. Calculators are not allowed except when a numerical answer
is required—calculators will then be provided by the person proctoring the exam. Please return
all bluebooks and formula sheets at the end of the exam. Use the last pages of your bluebooks for
“scratch” work, separated by at least one empty page from your solutions. “Scratch” work will not
be graded.
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The task is to find the electric potential everywhere inside a semi-infinite box where the electric
potential on some walls is specified. The configuration is described and depicted below.

Two very large, flat metal plates are located parallel to the x − z plane for x > 0 and
−∞ < z <∞ . One plate is located at y = 0 and the other at y = a. The plates are grounded.

In the y − z plane at x = 0 and between 0 < y < a, the electric potential is specified by
an external control, somehow. Call it V0(y) - it could be constant or it could be a function of y.

(a) Set up the defining equation for the electric potential everywhere between the plates and
carefully state the appropriate boundary conditions.

(b) Solve the equation for the electric potential subject to the boundary conditions.

(c) Find the coefficients in the series solution for the particular case where the externally con-
trolled potential is

V0(y) =

{
V0, a/2 < y < a

−V0, 0 < y < a/2
(1)

(d) How, in a real laboratory, might you approximate the situation described in (c)?



 Comprehensive Exam, Winter 2015 E&M Undergraduate (Solution) 
 
(a) The defining equation in the absence of external charges is the Laplace equation  

2V x, y   0.   

The potential cannot be a function of z because the plates extend to infinity in the ±z directions, 
and the externally controlled potential is explicitly not a function of z.  The appropriate 
coordinate system is rectangular. The boundary conditions are: 
(i) V = 0 when y = 0 (metal plate is an equipotential and is grounded) 
(ii) V = 0 when y = a (metal plate is an equipotential and is grounded) 
(iii) V = V0(y) when x = 0 (externally specified) 
(iv)  V  0as x  on physical grounds – further from the “hot” strip, the potential must 

become constant, and that constant must be zero because of the zero-voltage condition on 
the plates. 

The solution is unique because the potential is specified on all boundaries. 
 
(b) Solve for V(x,y): 

d2V x, y 
dx2 

d2V x, y 
dy2  0

 
Assume separable solutions: V x, y   X(x)Y (y)  and plug into the Laplace equation: 

 

   

f and g must be constant (and equal and opposite), otherwise infinitesimal changes in x with y 
constant or vice versa lead to a violation of the statement that the sum is constant.   
 
Let the separation constant be k2. 

d 2 X x 
dx2  k2 X x  X x   Ce kx  Dekx

d 2Y y 
dy2  k2Y y Y y   Asin ky   Bcos ky 

V x, y   Cekx  Dekx  Asin ky   Bcos ky  

 

BC (iv) requires that D = 0, or else the potential becomes infinite as x .  
BC (i) requires that B = 0 because cos(k.0) = 1 at y = 0 and the potential is zero at y = 0. 
BC (ii) requires that k = nπ/a (n =1,2,3…) because then sin(ka) = 0.  n = 0 is trivial and excluded. 
Thus  

V x, y   Aeknx sin kny   
Now the general solution to Laplace’s equation is a superposition of all possible solutions with 
different kn, :  



V x, y   cn
n1



 eknx sin kny   

We are left with BC (iii), and must match the coefficients cn to the particular V0(y).  
 
(c)  The general solution is a Fourier sine series in y, with an overall multiplier that depends on x.  
In particular at x = 0,  

V 0, y   cn
n1



 sin kny    and 

V0 y  
V0 a / 2  y  a

V0 0  y  a / 2






 

To find the coefficients, use the orthogonality property of sine functions (excluding  m = n = 0): 
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Various index relabelings are possible.

 



 
(d) To achieve the approximate configuration in the lab, use two large metal plates connected by 
metal wires to the electrical ground in the supply in the lab, or to a copper pipe driven into the 
earth outside.  “Large” means length and width much larger than the separation. (These are the 
plates parallel to the xz plane.   To achieve the configuration described for the yz plane, one has 
to deal with the discontinuities in the voltage at one has to deal with the discontinuities in the 
voltage at y =0, a/2, a described in the mathematically tractable case in the problem.  One could 
use two metal plates insulated from each other and from the grounded plates by as-thin-as-
possible insulators – skinny ceramic tubes, perhaps, or maybe just an air gap.  One plate could be 
charged to +V0, and the other to –V0 with independent voltage supplies (or batteries).  Deviations 
from the ideal configuration described would come from the finite size of the insulators, and 
from the finite lengths of the grounded plates relative to their separation. 
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Crazy carbons coupled in one-dimension

(a) The circles in the diagram below represent a spring-ball model of two carbon atoms constrained
to move in the horizontal direction only (without twisting). Here, each carbon atom is modeled
as a point mass sphere with mass m, and contains four bonds (dashed lines) that can be
approximated as springs. Assume all seven bonds shown have the same constant strength
(in N/m), α. The sides of the system (thick black lines) are immovable walls. Neglect any
gravitational or quantum effects.

(i) Find the characteristic (or natural) frequencies of this system in terms of known
constants.

(ii) Evaluate mathematically and describe the physical motion associated with the normal
mode(s) of this system.

(b) Assume now the walls are removed to give the infinitely long system of springs & balls shown
below. All bonds still have spring strength α, and only 1D horizontal motion is allowed.

(i) Write down a (differential) 1D-equation of motion for nth carbon mass, m in terms of
the neighboring masses.

(ii) Quantitatively determine and qualitatively discuss the allowed characteristic frequen-
cies, ω for this 1D infinite system. What are the minimum and maximum characteristic (or
natural) frequencies one might excite in this 1D system?
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Crazy carbons coupled in one-dimension

(a) The circles in the diagram below represent a spring-ball model of two carbon atoms constrained
to move in the horizontal direction only (without twisting). Here, each carbon atom is modeled
as a point mass sphere with mass m, and contains four bonds (dashed lines) that can be
approximated as springs. Assume all seven bonds shown have the same constant strength
(in N/m), α. The sides of the system (thick black lines) are immovable walls. Neglect any
gravitational or quantum effects.

(i) Find the characteristic (or natural) frequencies of this system in terms of known
constants.

Solution: .
(7-8 pts) Using Newtonian mechanics (i.e. F = mẍ) we can readily write a coupled differential
equation system, where x1 and x2 are the respective motions away from equilibrium. The
characteristic frequencies are independent of spring length, and depends only on spring force
(−αx1 and −αx2). By inspection, we find that for the left carbon mass (x1) we get:

mẍ1 = −4αx1 + αx2 (3)

For the right mass we get:

mẍ2 = −4αx2 + αx1 (4)

Let’s define ω2
o = α/m.Assume the solution may be obtained with an exponential of form

x1(t) = A1 exp iωt and x2(t) = A2 exp iωt, and we may solve the coupled ODEs by method
of determinants where the matrix equation is ẍ = Cx or more explicitly

C =

(
−4ω2

o ω2
o

ω2
o −4ω2

o

)
We can now solve for the eigenvalues (or characteristic frequencies) of matrix C by,

det
(
C − ω2I

)
=
(
−4ω2

o − ω2
)2 − ω4

o = 0 (5)

(6)
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Hence characteristic frequencies are ω1 =
√

5ωo =
√

5α/m and ω2 =
√

3ωo =
√

3α/m

(ii) Evaluate mathematically and describe the physical motion associated with the normal
mode(s) of this system.

Solution: .
(4-5 pts) Explicitly solving for the two normal modes (eigenvectors), we obtain(
C − 5ω2

oI
)(x1

x2

)
= 0

AND(
C − 3ω2

oI
)(x1

x2

)
= 0

Solving the above eigenequations, we see by inspection that two modes x2 = −x1 or x2 = x1.
These modes physically correspond to in-phase symmetric oscillation for the two masses, and
anti-phase oscillations (scissors motion) of the two masses.

(b) Assume now the walls are removed to give the infinitely long system of springs & balls shown
below. All bonds still have spring strength α, and only 1D horizontal motion is allowed.

(i) Write down a (differential) 1D-equation of motion for nth carbon mass, m in terms of
the neighboring masses.

Solution: .
(2 pts) Using Newtonian mechanics (i.e. F = mẍ) we can readily write a coupled differential
equation system. By inspection that for the nth carbon mass (xn) we get:

mẍn = −4αxn + αxn−2 + αxn−1 + αxn+1 + αxn+2 (7)

(ii) Quantitatively determine and qualitatively discuss the allowed characteristic frequen-
cies, ω for this 1D infinite system. What are the minimum and maximum characteristic (or
natural) frequencies one might excite in this 1D system?

Solution: .
(6 pts) Assume a solution of the form xn(t) = Ae−iωteikna where k = 2π/λ, and λ is the
wavelength of the normal mode excited, and a is the 1D translation distance. Subbing in part
(i) we get:
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−mω2eikna = −4αeikna + αeik(n−2)a + αeik(n−1)a + αeik(n+1)a + αeik(n+2)a (8)

−mω2 = −4α+ α(e−i2ka + ei2ka) + α(e−ika + eika) (9)

ω2 =
α

m
(4− 2 cos(2ka)− 2 cos(ka)) (10)

Hence we get a continuous dispersion relation, with the following values of characteristic
frequencies. ω(k) =

√
α/m

√
4− 2 cos(2ka)− 2 cos(ka). The minimum value approaches

zero, and the maximum value approaches
√

6α/m.
An alternate (less ideal) approach is to solve the characteristic frequencies of a larger, but
finite mass problems (e.g. a 5 × 5), and then to graphically extrapolate to infinite limit of
allowed characteristic frequencies.
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An ideal paramagnet satisfies the equation of state (Curie’s law),

M =
D

T
H,

where M is the magnetization, H the magnetic field, T the absolute temperature, and D a constant.
An internal energy U is independent of M , following that dU = CMdT , where CM is a constant
heat capacity. Assume that the paramagnet is used to create a Carnot engine and that the engine
operates between temperatures Th and Tc such that Th > Tc.

(a) The first law of Thermodynamics for the magnetic system is written as

dU = dQ− dW = TdS +HdM.

For an adiabatic process, show that

1

2
(M2

h −M2
c ) = CMD ln

Th
Tc

= CMD ln
HhMc

HcMh
,

where Mh (Mc) is the magnetization at Th (Tc), when the magnetic field is Hh (Hc).

The Carnot cycle takes the following steps:

• 1→ 2 isothermal demagnetization at T = Th, M2 < M1

• 2→ 3 adiabatic demagnetization, Th → Tc, M3 < M2

• 3→ 4 isothermal magnetization at T = Tc, M4 > M3

• 4→ 1 adiabatic magnetization, Tc → Th, M1 > M4.

(b) Determine the heat transfer ∆Q and the work performed by the system ∆W for each of the
four steps.

(c) Sketch the Carnot cycle in the (M,T )-plane and in the (M,H)-plane.

(d) Prove that the engine has efficiency

η = 1− Tc
Th
.
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An ideal paramagnet satisfies the equation of state (Curie’s law),

M =
D

T
H,

where M is the magnetization, H the magnetic field, T the absolute temperature, and D a constant.
An internal energy U is independent of M , following that dU = CMdT , where CM is a constant
heat capacity. Assume that the paramagnet is used to create a Carnot engine and that the engine
operates between temperatures Th and Tc such that Th > Tc.

(a) The first law of Thermodynamics for the magnetic system is written as

dU = dQ− dW = TdS +HdM.

For an adiabatic process, show that

1

2
(M2

h −M2
c ) = CMD ln

Th
Tc

= CMD ln
HhMc

HcMh
,

where Mh (Mc) is the magnetization at Th (Tc), when the magnetic field is Hh (Hc).

Solution: .
For an adiabatic process, dQ = 0, therefore dU = −dW , where dU = CMdT and −dW =
HdM . Using the equation of state, we obtain

CMdT = HdM =
T

D
MdM (11)

⇒ CMD
dT

T
= MdM (12)

⇒
∫ Th

Tc

CMD
dT

T
=

∫ Mh

Mc

MdM (13)

⇒ CMD ln
Th
Tc

=
1

2
(M2

h −M2
c ) (14)

The equation of state leads to

Th
Tc

=
DHh/Mh

DHc/Mc
=
HhMc

HcMh
. (15)

Therefore,
1

2
(M2

h −M2
c ) = CMD ln

Th
Tc

= CMD ln
HhMc

HcMh
(16)

The Carnot cycle takes the following steps:

• 1→ 2 isothermal demagnetization at T = Th, M2 < M1

• 2→ 3 adiabatic demagnetization, Th → Tc, M3 < M2

• 3→ 4 isothermal magnetization at T = Tc, M4 > M3

• 4→ 1 adiabatic magnetization, Tc → Th, M1 > M4.

(b) Determine the heat transfer ∆Q and the work performed by the system ∆W for each of the
four steps.
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Solution: .

• 1 → 2 isothermal demagnetization at T = Th, M2 < M1

For an isothermal process, dU = CMdT = 0, therefore dQ = dW = −HdM . Using the
equation of state, we obtain

dQ = dW = −Th

D
MdM (18)

⇒ ∆Q12 = ∆W12 = −Th

D

∫ M2

M1

MdM =
Th

2D
(M2

1 −M2
2 ) > 0 (19)

• 2 → 3 adiabatic demagnetization, Th → Tc, M3 < M2

For an adiabatic process, dQ = 0, therefore

∆Q23 = 0. (20)

Since dW = −dU = −CMdT ,

∆W23 = −CM

∫ Tc

Th

dT = CM (Th − Tc). (21)

• 3 → 4 isothermal magnetization at T = Tc, M4 > M3

dQ = dW = −Tc

D
MdM (22)

⇒ ∆Q34 = ∆W34 = −Tc

D

∫ M4

M3

MdM = − Tc

2D
(M2

4 −M2
3 ) < 0 (23)

• 4 → 1 adiabatic magnetization, Tc → Th, M1 > M4.

Since the step is an adiabatic process,

∆Q41 = 0. (24)

Since dW = −dU = −CMdT ,

∆W41 = −CM

∫ Th

Tc

dT = −CM (Th − Tc). (25)

(c) Sketch the Carnot cycle in the (M,T )-plane and in the (M,H)-plane.
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Solution: .
In the (M,T )-plane,

• 2→ 3 adiabatic demagnetization, Th → Tc, M3 < M2

1

2
(M2

2 −M2) = CMD ln
Th
T

(25)

⇒ Th
T

= exp

(
M2

2 −M2

2CMD

)
(26)

⇒ T (M) = Th exp

(
M2 −M2

2

2CMD

)
(27)

• 4→ 1 adiabatic magnetization, Tc → Th, M1 > M4.

Similarly,

T (M) = Tc exp

(
M2 −M2

4

2CMD

)
(28)

In the (M,H)-plane,

• 2→ 3 adiabatic demagnetization, Th → Tc, M3 < M2

1

2
(M2

2 −M2) = CMD ln

(
Th
D

M

H

)
(29)

⇒ Th
D

M

H
= exp

(
M2

2 −M2

2CMD

)
(30)

⇒ H(M) =
Th
D
M exp

(
M2 −M2

2

2CMD

)
(31)
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• 4→ 1 adiabatic magnetization, Tc → Th, M1 > M4.

Similarly,

H(M) =
Tc
D
M exp

(
M2 −M2

4

2CMD

)
(32)

(d) Prove that the engine has efficiency

η = 1− Tc
Th
.

Solution: .
The total work performed by the system is

∆W = ∆W12 + ∆W23 + ∆W34 + ∆W41. (33)

Since ∆W12 = ∆Q12, ∆W34 = ∆Q34, and ∆W23 = −∆W41,

∆W = ∆Q12 + ∆Q34. (34)

The engine efficiency is

η =
∆W

∆Q12
(35)

= 1 +
∆Q34

∆Q12
(36)

= 1 +
Tc

2D (M2
3 −M2

4 )
Th

2D (M2
1 −M2

2 )
(37)

= 1− Tc
Th

M2
4 −M2

3

M2
1 −M2

2

(38)
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From Eq.(15), we obtain

M2
1 −M2

2 = M2
4 −M2

3 = 2CMD ln
Th
Tc

(39)

Thus,

η = 1− Tc
Th

(40)
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An electron (charge e and mass m) is trapped in an infinite potential well of width a. At t = 0,
the electron is prepared in the state 1√

2
(|1〉+ |2〉) where |1〉 is the ground state and |2〉 is the first

excited state.

(a) Find the expectation value for the electron energy as a function of time in terms of a and
fundamental constants.

(b) Find the expectation value for the electron position as a function of time in terms of a and
fundamental constants.
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A flyball governor is a device commonly used in steam engines to control the flow of steam. In the
simplified version shown above, a rotating shaft is connected to two hinges of mass M through rigid,
massless rods of length L. The rods are also attached at the bottom of the device to a larger block of
mass 3M which can slide freely up and down the shaft. The shaft rotates at constant angular rate ω.

You may assume masses are all coplanar and can be treated as point masses. There is a con-
stant gravitational acceleration g acting downward g. Let θ be the angle between the hinged rod
and the vertical rod.

(a) Assume the you observe a constant time-independent angle, θ (i.e. θ(t) = θo). What is the
angular rate of rotation, ω?

(b) For a given angular rotation rate ω, how high (h) does the lower 3M mass rise above its lowest
(rest) position?
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A flyball governor is a device commonly used in steam engines to control the flow of steam. In the
simplified version shown above, a rotating shaft is connected to two hinges of mass M through rigid,
massless rods of length L. The rods are also attached at the bottom of the device to a larger block of
mass 3M which can slide freely up and down the shaft. The shaft rotates at constant angular rate ω.

You may assume masses are all coplanar and can be treated as point masses. There is a con-
stant gravitational acceleration g acting downward g. Let θ be the angle between the hinged rod
and the vertical rod.

(a) Assume the you observe a constant time-independent angle, θ (i.e. θ(t) = θo). What is the
angular rate of rotation, ω?

Solution: .
Write the Lagrangian, L = T − U .
First we need to define a coordinate system, in terms the rod angle, θ and the rotation angle
φ. Let’s make the top point where the rods are all anchored our origin point. Accordingly, the
location of a masses m can be given by the coordinates, x1 = L sin θ cosφ, y1 = L sin θ sinφ
and z1 = −L cos θ.

Likewise, the location of the lower mass is x2 = 0, y2 = 0 and z2 = −2L cos θ.

The only potential energy is gravitational, so U = 2Mgz1 + 3Mgz2 = −8MgL cos θ.

Similarly the kinetic can be expressed as,

T = 2
1

2
M(ẋ1

2 + ẏ1
2 + ż1

2) +
3

2
M(ż2

2) (41)

= ML2(θ̇2 + sin2 θφ̇2) + 6ML2 sin2 θθ̇2 (42)
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Since φ̇ = ω. The system Lagrangian is then:

L = T − U (43)

= L2(M + 6M sin2 θ)θ̇2 +ML2ω2 sin2 θ + 8MgL cos θ (44)

We then use the Euler-Lagrange equations to get the equation for motion. With respect to θ
we get,

0 =
∂L
∂θ
− d

dt

(
∂L
∂θ̇

)
(45)

0 = −L2(M + 6M sin2 θ)θ̈2 − 6ML2 sin θ cos θθ̇2 +ML2ω2 sin θ cos θ − 4MgL sin θ (46)

For equilibrium we can simplify by noting that, θ̈ = θ̇ = 0 giving, ML2ω2 sin θ cos θ −
4MgL sin θ = 0 or

ω =

√
4g

L

1

cos θ
(47)

(b) For a given angular rotation rate ω, how high (h) does the lower 3M mass rise above its lowest
(rest) position?

Solution: .
The central mass height is given by h = 2L+ z1. At a fixed rotation rate our answer in part
b can be rewritten as,

ω =

√
4g

1

−z1
(48)

z1 = − 4g

ω2
(49)

or h = 2L− 4g
ω2
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(a) Consider the potential well shown below (Fig. 1A). The potential profile has three steps,
located at x = 0, a and 2a. For x > 2a, the potential goes to infinity. An electron is trapped
in this well.

(i) Copy Figure 1B into your blue book. Draw a plausible electron wavefuntion, ψo(x),
for the ground state (the eigenstate with energy Eo). Explain the important features of your
wavefunction.

(ii) Make another copy of Figure 1B in your blue book. Draw a plausible electron wavefun-
tion, ψ4(x), for the 4th excited state (the eigenstate with energy E4). Explain the important
features of your wavefunction.

(b) Calculate the probability of reflection and probability of transmission for an electron incident
from the left onto a potential step (see figure below). The step height ∆V is less than the
electron energy E. Give your answer in terms of E, ∆V , and fundamental constants.
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Electric charge is distributed uniformly with constant volume density inside an infinitely long
cylinder, of radius a. The cylinder rotates around its long (z) axis with angular velocity ω. Use
cylindrical coordinates, in which ρ is the perpendicular distance to the z axis and φ is an azimuthal
angle measured from the positive x-axis. In what follows, justify any symmetry arguments carefully
and explain why quantities are zero if you assert that they are zero.

(a) What is the current density J inside the cylinder? Express the result in cylindrical coordinates,
i.e., determine Jρ, Jφ, Jz as functions of ρ, φ and z.

(b) What is the magnetic field outside the cylinder, i.e., at distances ρ, such that ρ > a? Express
the result in cylindrical coordinates, i.e., determine Bρ, Bφ, Bz as functions of ρ, φ and z.

(c) What is the magnetic field inside the cylinder? Express the result in cylindrical coordinates,
i.e., determine Bρ, Bφ, Bz as functions of ρ, φ and z.



 Comprehensive Exam, Spring 2015  E&M Graduate (Solution) 
 
Set up the cylinder long axis as the z-axis.  In cylindrical coordinates, position is specified by 

 where z measures the distance from the xy plane and  measures the perpendicular 

distance to the z-axis. ̂ is a unit vector in the x-y plane (or parallel to it), and ̂ is a unit vector in 

the direction of increasing angle , which is the angle the position vector (projection) makes with 
the positive x-axis.  

  ̂  x̂ cos  ŷsin  

 ̂   x̂sin  ŷcos  
 
(a) When the static charge density  is set into rotation, it 
generates a current density J (charge per unit time per unit 
area).    
 
Rotation is along the z-axis:  so the current is in the 
azimuthal direction only.  
 

 

 
J  Jz  0

J  
 

 
 
 
The task is to find the magnetic field B, which requires Ampere’s law.  First note that all the 
possible field components could in principle be functions of z, , : 
Bz  Bz z,, ; B  B z,, ; B  B z,,   
However, NONE can be functions of z or .  If they were, that would allow us to determine the 
vertical or azimuthal position by the B-field, and that is impossible given the symmetry of the 
problem. 
Also, the field MUST be in the z direction.  Consider the cylinder as a superposition of current 
loops – each producing a dipole field. In the plane of any particular loop, the field is always in 
the z direction (by the Biot Savart Law).  The radial component of the field produced by another 
loop a distance d above it is cancelled by the radial component of the field by a corresponding 
loop a distance d below it.  There are infinitely many such loops, so there is no radial field. 
There is also no azimuthal field.  Again the Biot Savart law says , and because the 
current is azimuthal, there is no azimuthal component of the field. 
 
This leaves us with a B field in the z direction that, at most, depends on : 
Bz  Bz  ; B  B  0 

 



z
x̂

ŷ





(b)  Ampere’s law says where 

Ienc is the current that threads the loop.   Use a 
rectangular loop outside the cylinder, so not 
current threads the loop. One arm is parallel to, 
and a distance  from, the z-axis, and a parallel 
arm at infinity.   The other arms are 
perpendicular to the z-direction.  We have 
already argued that B is in the z-direction, so 
there is not contribution to the loop integral 
along the directions perpendicular to z : 

 

If the cylinder is infinite, the magnetic field 
remains confined to the cylinder, which means 

that B̂    0. This in turn implies that Bz   a   0 . 

 
 (c) Ampere’s law with a rectangular loop with 
one arm inside the cylinder, using the same 
arguments as in (b), only now there is current 
threading the loop:  

0 enc

loop

B d I


   



Bz  ℓ 0 Jenc d dz


a


0

ℓ

  0ℓ  d


a

 
0ℓ

2
a2   2 

Bz 
0

2
a2   2 

  
 
 

	


ℓ

	


ℓ
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Consider a quantum system of three energy levels, 0, E, and 3E. Two identical particles are in the
system, and each particle can be in any one of three quantum states. The system is in contact with
a heat reservoir at temperature T (β = 1/kBT ). A possible configuration is shown in the figure
below.

�

�

�

3�

Find the partition function Z and the mean energy 〈E〉, if the particles obey

(a) Fermi-Dirac statistics (Assume that the particles are spin-1/2 Fermions and they are spin
up.)

(b) Bose-Einstein statistics (Assume that the particles are spin-0 bosons).

(c) classical Maxwell-Boltzman statistics (Note: Identical particles are distinguishable in classical
statistics).
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Consider a quantum system of three energy levels, 0, E, and 3E. Two identical particles are in the
system, and each particle can be in any one of three quantum states. The system is in contact with
a heat reservoir at temperature T (β = 1/kBT ). A possible configuration is shown in the figure
below.

�

�

�

3�

Find the partition function Z and the mean energy 〈E〉, if the particles obey

(a) Fermi-Dirac statistics (Assume that the particles are spin-1/2 Fermions and they are spin
up.)

Solution: .
The partition function is

Z =
∑
R

e−βER , (50)

where the sum is all the possible state R of the whole system. All the possible states of two
Fermions are illustrate in the figure below, where ER = E, 3E, and 4E.

�

�

3�

�

�

3�

�

�

3�

�� � � �� � 3�
�� � 4�

Therefore,
Z = e−βE + e−3βE + e−4βE . (51)

The mean energy is

〈E〉 = − 1

Z

∂Z

∂β
(52)

=
Ee−βE + 3Ee−3βE + 4Ee−4βE

e−βE + e−3βE + e−4βE
(53)

= E
1 + 3e−2βE + 4e−3βE

1 + e−2βE + e−3βE
(54)

(b) Bose-Einstein statistics (Assume that the particles are spin-0 bosons).
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Solution: .
All the possible states of two Bosons are illustrate in the figure below, where ER = 0, E, 2E,
3E, 4E, and 6E.
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Therefore,
Z = 1 + e−βE + e−2βE + e−3βE + e−4βE + e−6βE . (55)

The mean energy is

〈E〉 = − 1

Z

∂Z

∂β
(56)

= E
e−βE + 2e−2βE + 3e−3βE + 4e−4βE + 6e−6βE

1 + e−βE + e−2βE + e−3βE + e−4βE + e−6βE
(57)

(c) classical Maxwell-Boltzman statistics (Note: Identical particles are distinguishable in classical
statistics).

Solution: .
Even though two particles are identical, they are distinguishable in classical MB statistics.
All the possible states of two MB particles are illustrate in the figure below, where ER = 0,
E, 2E, 3E, 4E, and 6E.
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Therefore,
Z = 1 + 2e−βE + e−2βE + 2e−3βE + 2e−4βE + e−6βE . (58)
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The mean energy is

〈E〉 = − 1

Z

∂Z

∂β
(59)

= 2E
e−βE + e−2βE + 3e−3βE + 4e−4βE + 3e−6βE

1 + 2e−βE + e−2βE + 2e−3βE + 2e−4βE + e−6βE
(60)




