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OSU Physics Department
Comprehensive Examination #120

Monday, September 29 and Tuesday, September 30, 2014

Fall 2014 Comprehensive Examination

PART 1, Monday, September 29, 9:00pm

General Instructions

This Fall 2014 Comprehensive Examination consists of eight problems of equal weight (20 points
each). It has four parts. The first part (Problems 1-2) is handed out at 9:00 am on Monday,
September 29, and lasts three hours. The second part (Problems 3-4) will be handed out at 1:00 pm
on the same day and will also last three hours. The third and fourth parts will be administered
on Tuesday, September 30, at 9:00 am and 1:00 pm, respectively. Work carefully, indicate your
reasoning, and display your work clearly. Even if you do not complete a problem, it might be
possible to obtain partial credit—especially if your understanding is manifest. Use no scratch
paper; do all work in the bluebooks, work each problem in its own numbered bluebook, and be
certain that your chosen student letter (but not your name) is inside the back cover of every booklet.
Be sure to make note of your student letter for use in the remaining parts of the examination.

If something is omitted from the statement of the problem or you feel there are ambiguities,
please get up and ask your question quietly and privately, so as not to disturb the others. Put all
materials, books, and papers on the floor, except the exam, bluebooks and the collection of formulas
and data distributed with the exam. Calculators are not allowed except when a numerical answer
is required—calculators will then be provided by the person proctoring the exam. Please return
all bluebooks and formula sheets at the end of the exam. Use the last pages of your bluebooks for
“scratch” work, separated by at least one empty page from your solutions. “Scratch” work will not
be graded.
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Problem 1 Monday morning 3

A ceiling is covered by a horizontal foil of aluminum (a conducting metal) that is insulated by a
thin plastic coating. The plastic has a relative dielectric constant of 1, i.e. ε = εo.

A spherical balloon of mass m and radius a is given an electric charge Q by rubbing it against
a wool sweater. When placed in contact with the ceiling, the balloon remains suspended. Assume
the charge is, and remains, distributed uniformly on the balloon‘s surface and the balloon remains
spherical.

(a) Find the distribution of surface charge density in the foil, σ(ρ), as a function of the distance
ρ from the point of contact.

(b) What is the minimum value of Q necessary so the balloon will not fall?







Problem 2 Monday morning 5

Bead in a bowl. Chester the cat watches the motion of a bead in a bowl. A bead of mass m moves
under the influence of gravity on the inner frictionless surface of a paraboloid bowl of revolution
described by x2 +y2 = az. The z-axis is vertical upwards and there is a uniform gravitational field.

Assume the bead can be treated as a point-particle (and neglect the rotation of the bead).

(a) Chester imposes arbitrary initial conditions on the bead. He then desires to catch and kill
the bead at some later time.

Help Chester catch the bead by deriving the general equation of motion for the bead in the
paraboloid. Do not solve.

(You may assume cats are adept at solving differential equations, enabling him to follow
the bead’s three-dimensional trajectory perfectly once you derive the simplest differential
equation(s) describing the bead’s motion.)

(b) Suppose the bead’s motion is now constrained to a circle of fixed height z = h. Find the
bead’s angular velocity and show it is independent of the height, h.

(c) Chester get restless, and he decides to perturb the bead slightly when it is traveling in a purely
circular path (as in part b). In the limit that h � a, show that Chester observes the bead’s
new time-dependent frequency of oscillation to be approximately twice the original angular
velocity of the unperturbed problem.



Solutions to problem 2 Monday morning 6

Bead in a bowl. Chester the cat watches the motion of a bead in a bowl. A bead of mass m moves
under the influence of gravity on the inner frictionless surface of a paraboloid bowl of revolution
described by x2 +y2 = az. The z-axis is vertical upwards and there is a uniform gravitational field.

Assume the bead can be treated as a point-particle (and neglect the rotation of the bead).

(a) Chester imposes arbitrary initial conditions on the bead. He then desires to catch and kill
the bead at some later time.

Help Chester catch the bead by deriving the general equation of motion for the bead in the
paraboloid. Do not solve.

(You may assume cats are adept at solving differential equations, enabling him to follow
the bead’s three-dimensional trajectory perfectly once you derive the simplest differential
equation(s) describing the bead’s motion.)

Solution: .
This a three-dimensional problem in which gravity in the only potential force. So in Cartesian
coordinates we get the following kinetic (T ) and potential energy (U);

T =
1

2
m(v2x + v2y + v2z) (1)

U = mgz (2)

Cylindrical coordinates are optimal for this problem, it is difficult to find out what the con-
served quantity is otherwise. Let x = r cosφ, y = r sinφ such that the bead is on the
paraboloid r2 = za. Thus, for T and U we get,

T =
mr2

2
φ̇2 +

mṙ2

2
+
mż2

2
(3)

U = mgz (4)
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OR

T =
mr2

2
φ̇2 +

mṙ2

2

(
1 +

4r2

a2

)
(5)

U =
mg

a
r2 (6)

Hence, the bead’s motion may be fully described by r(t) and φ(t).

We then use the Euler-Lagrange equation to get the equation for motion, where our La-
grangian is L(φ, r, φ̇, ṙ) = T − U . With respect to φ we get,

∂L

∂φ
− d

dt

(
∂L

∂φ̇

)
= 0 (7)

d

dt

(
mr2φ̇

)
= 0 (8)

This differential equation is solved trivially, and suggests the existence of constant conserved
quantity, J = mr2φ̇.

Evaluating the Euler-Lagrange equations for r, we get ∂L
∂r −

d
dt

(
∂L
∂ṙ

)
= 0 or

mrφ̇2 +
4mrṙ2

a2
− 2mg

a
r −m

(
1 +

4r2

a2

)
r̈ − 8mr

a2
ṙ2 = 0 (9)

Lastly, we must note that we can effectively eliminated the φ̇ contribution by subbing in our
conserved quantity, J . So our final differential equation of motion for the bead becomes,

(
1 +

4r2

a2

)
r̈ =

J2

m2r3
− 4r

a2
ṙ2 − 2g

a
r (10)

OR, alternatively Chester the cat can simply simplify equation 9 (taking note of the conserved
quantity) to get , (

1 +
4r2

a2

)
r̈ =

(
φ̇2 − 4

a2
ṙ2 − 2g

a

)
r (11)

to catch the bead in bowl, where φ̇ = J/mr2.

(b) Suppose the bead’s motion is now constrained to a circle of fixed height z = h. Find the
bead’s angular velocity and show it is independent of the height, h.
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Solution: .
When confined to a circle the bead motion will have a constant radius, ro =

√
ha. Further-

more, we note that ṙ = 0 and r̈ = 0.

Evaluating our differential equation of motion under these conditions we obtain,

0 =
J2

m2r3o
− 2g

a
ro (12)

J2 =
2m2gr4o

a
(13)

Our angular velocity, ω (i.e. φ̇) can be then solved for directly using J = mr2φ̇,

φ̇ = ±
√

2g/a (14)

= ±ω (15)

φ̇ = ω is independent of h, as required. Hence, Chester the cat will observe a constant
angular velocity of the bead everywhere in the bowl (providing its motion is confined to a
perfect circle). This will make Chester’s catch much easier!

(c) Chester get restless, and he decides to perturb the bead slightly when it is traveling in a purely
circular path (as in part b). In the limit that h � a, show that Chester observes the bead’s
new time-dependent frequency of oscillation to be approximately twice the original angular
velocity of the unperturbed problem.

Solution: .
Chester perturbs both the constant radius, ro and angular velocity ω to give a new trajectory
described by time-dependent perturbation r1 and ω1, i.e.

φ̇(t) = ω + ω1(t) (16)

r(t) = ro + r1(t) (17)

We now sub this into the Euler-Lagrange equations and linearize each equation. Combining
with the first Euler-Lagrange equation we get,

d

dt

(
mr2φ̇

)
= 0 (18)

2rṙφ̇+ r2φ̈ = 0 (19)

2(ro + r1)ṙ1(ω + ω1) + (ro + r1)2ω̇1 = 0 (20)

Since the perturbation is small we can now linearize the above equation with respect to ṙ1,
neglecting all quadratic and higher order perturbative terms, i.e. equation 20 can be reduced
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to,

2roṙ1ω + r2oω̇1 = 0 (21)

ω̇1 =
−2ṙ1
ro

ω (22)

Likewise for the second Euler-Lagrange equation we desire to get equation of motion for r̈1(t),
we sub in our purturbative approximation from equation 11, obtaining(

1 +
4(ro + r1)2

a2

)
r̈1 =

(
(ω + ω1)2 − 4

a2
ṙ1

2 − 2g

a

)
(ro + r1) (23)

Since the perturbation is small we again linearize the above equations this time with respect
to ω1, neglecting all quadratic and higher order perturbative terms. We reatain only the
lowest order terms (with respect to r and ω) on both sides of the equality. Solving for r̈1 we
obtain,

r̈1 =
2roωω1

1 + 4r2o/a
2

(24)

Furthermore we note that since h � a, 4r2o/a
2 = 4ha/a2 = 4h/a � 1 hence, r̈1 ∼= 2roωω1.

We can now decouple the ODEs by subbing in (from equation 22) that

ω̈1 =
−2r̈1
ro

ω (25)

ω̈1 = −(2ω)2ω1 (26)

Hence the approximate solution to the resulting frequency of oscillation is form, ω1(t) =
A cos(2ωt + B), consequently the observed frequency of oscillation (ω1) is twice the beads
angular velocity (φ̇ = ω), as required.

Note: this last part was intended to be challenging. Any reasonable approach using pertur-
bation theory and sensible approximations will get full points.
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N particles of spin 1/2 form a 1D lattice, lining up on a straight line. Every spin interacts with its
nearest neighbors. The Hamiltonian of this 1D Ising model is

H = −J
N−1∑
i=1

σiσi+1, J : interaction strength.

The spin variables σi can only take the values +1 (spin-up) and -1 (spin-down).

(a) Show that the partition function Z of the assembly at temperature T is

Z = 2N [cosh (βJ)]
N−1

with β =
1

kT
.

(b) Find the energy E of the system as a function of temperature T . What are the energies at
two extreme temperatures, T = 0 and T → ∞? Justify that your answer is consistent with
the spin configurations at T = 0 and T →∞.

(c) Find the entropy S of the system as a function of temperature T . What are the entropies at
two extreme temperatures, T → 0 and T →∞?

Useful formula: Binomial expansion

(1 + x)n =

n∑
k=1

n!

k!(n− k)!
xk
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N particles of spin 1/2 form a 1D lattice, lining up on a straight line. Every spin interacts with its
nearest neighbors. The Hamiltonian of this 1D Ising model is

H = −J
N−1∑
i=1

σiσi+1, J : interaction strength.

The spin variables σi can only take the values +1 (spin-up) and -1 (spin-down).

(a) Show that the partition function Z of the assembly at temperature T is

Z = 2N [cosh (βJ)]
N−1

with β =
1

kT
.

Solution: .
As there are N particles, (N − 1) interacting pairs. Of theses, Np is the number of parallel
spins and Na the number of antiparallel spins. Since

Np +Na = N − 1, (27)

the energy of a given configuration is

ENp,Na = J(Np −Na) = 2Np + 1−N. (28)

The partition function is defined as

Z =
∑
i,j

e−E/kT . (29)

There are (N −1)! permutations of N −1 pairs, but only (N −1)!/Na!Np! are distinguishable.
Hence

Z = 2

N−1∑
Np=0

(N − 1)!

Na!Np!
exp

[
−J(2Np + 1−N)

kT

]
(30)

= 2 exp

[
−J(N − 1)

kT

] N−1∑
Np=0

(N − 1)!

((N − 1)−Np)!Np!
exp

[
−2JNp

kT

]
(31)

The overall factor of 2 arises because reversing the direction of all spins does not change Np or
Na but does give rise to a new configuration. In the above, the sum is a binomial expansion.
The partition function then becomes

Z = 2 exp

[
−J(N − 1)

kT

] [
1 + exp

(
− 2J

kT

)]N−1
(32)

= 2N
[
cosh

(
J

kT

)]N−1
(33)

= 2N [cosh (βJ)]
N−1

. (34)

(b) Find the energy E of the system as a function of temperature T . What are the energies at
two extreme temperatures, T = 0 and T → ∞? Justify that your answer is consistent with
the spin configurations at T = 0 and T →∞.



Solutions to problem 3 Monday afternoon 12

Solution: .
The energy of the N particle system is

E = − ∂

∂β
lnZ (35)

= − ∂

∂β
ln
{

2N [cosh (βJ)]
N−1

}
(36)

= −(N − 1)
∂

∂β
ln [cosh (βJ)] (37)

= −(N − 1)J tanh (βJ) (38)

At T = 0 (β → ∞), tanh (βJ) = 1, thus, E(T = 0) = −(N − 1)J . All the spins must be
parallel at T = 0 for the system to be in the ground state. The energy of the N − 1 spin pairs
of the same direction is E(T = 0) = −(N − 1)J .

For T →∞ (β = 0), E = 0. Since the spins are randomly oriented for T →∞, Na = Np and
E = 0.

(c) Find the entropy S of the system as a function of temperature T . What are the entropies at
two extreme temperatures, T → 0 and T →∞?

Solution: .
The Helmholtz free energy is

F = −kT lnZ (39)

and the entropy is

S = −
(
∂F

∂T

)
= k lnZ + kT

∂

∂T
lnZ (40)

= k lnZ + kT
∂

∂β
lnZ

∂β

∂T
= k lnZ +

E

T
(41)

= k ln
[
2N [cosh (βJ)]

N−1
]
− 1

T
(N − 1)J tanh (βJ) (42)

For T → 0 (β →∞), cosh(βJ)→ 1
2e
βJ , thus

S ∼= k ln

[
2N
(
eβJ

2

)N−1]
− (N − 1)J

T
(43)

= k ln 2 +
(N − 1)J

T
− (N − 1)J

T
(44)

= k ln 2 (45)

For T →∞ (β → 0), cosh(βJ)→ 1, thus

S ∼= k ln
(
2N
)

+ E(∞)/T (46)

= kN ln 2 (47)
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Useful formula: Binomial expansion

(1 + x)n =

n∑
k=1

n!

k!(n− k)!
xk
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(a) The potential energy of a non-relativistic particle of mass m in 1 dimension is zero everywhere
except at x = 0, where the potential energy is

V (x) =
~2β
2m

δ(x)

δ(x) is the Dirac delta function, and β < 0 is a parameter that characterizes the potential
well strength. Let us first explore bound states of this system.

(i) Integrate the eigenvalue equation Hφ(x) = Eφ(x) to show that the derivative of the
wave function φ(x) is not continuous at x = 0, and that the change in the derivative at x = 0
is equal to βφ(0).

(ii) Calculate the bound state energies and wave functions of the system.

(iii) How many are states are there - zero? a finite number (how many)? an infinite number?

(b) Now let β > 0, turning the well into a barrier (very thin, very high at x = 0), again with
zero potential everywhere else. We will explore the scattering of unbound states. The non-
relativistic particle is now incident from the left (x = −∞) and travels in the positive x
direction with momentum p, total energy E > 0.

(i) Calculate the reflection and transmission coefficients. The result in (a)(i) will be use-
ful.

(ii) Show that the sum of the transmission probability and the reflection probability is 1.



Undergraduate quantum mechanics 

 

(a) The potential energy of a non-relativistic particle of mass m in 1 dimension is zero 

everywhere except at x = 0, where the potential energy is  

. 

δ(x) is the Dirac delta function, and β < 0 is a parameter that characterizes the potential 

well strength.  Let us first explore bound states of this system. 

 

(i) Integrate the eigenvalue equation Hϕ x( ) = Eϕ x( )
 

to show that the derivative of the 

wave function Hϕ x( ) = Eϕ x( )  is not continuous at x = 0, and that the change in the 

derivative at x = 0 is equal to βϕ 0( ). 

(ii) Calculate the bound state energies and wave functions of the system.  

(iii) How many are states are there - zero? a finite number (how many)?  an infinite 

number?   

 

(b) Now let β > 0 , turning the well into a barrier (very thin, very high at x = 0), again 

with zero potential everywhere else.  We will explore the scattering of unbound states.  

The non-relativistic particle is now incident from the left x = −∞( ) and travels in the 

positive x direction with momentum p, total energy E > 0.  

 

(i) Calculate the reflection and transmission coefficients.  The result in (a)(i) will be 

useful. 

 

(ii) Show that the sum of the transmission probability and the reflection probability is 1. 

  



Undergraduate quantum mechanics - SOLUTION 

 

(a) (i) Integrate Hϕ = Eϕ across the origin (ε>0) 

 

Take the limit that ε->0.  The wave function is continuous at the origin, but the derivative 

is not necessarily. 0+(-) means “very close to zero, but on the positive (negative) side”. 

 

 

The required result follows: 

∆
dϕ x( )

dx
x=0

= βϕ 0( ) 

 

(a) (ii) For bound states, E < 0.  

 

Away from the origin, V(x) = 0. 

 

 

 

 

For E < 0,  is imaginary. Define real and rewrite: 

ϕ x( ) = Ae
κ x + Be

−κ x  

a superposition of growing and decaying exponentials.  The growing exponential 

becomes infinite and therefore not normalizable as x goes to ±infinity, which is 

unphysical for a bound state.  So we have  



wave function: ϕ x( ) =
Ae

κ x
x < 0

Be
−κ x

x > 0





  
where  

derivative:
dϕ x( )

dx
=

κ Ae
κ x

x < 0

−κ Be
−κ x

x > 0





  

 

At the origin, continuity of the wave function at x = 0 requires 

A = B
  

Normalize the wave function: 

ϕ x( )
2

dx
−∞

∞

∫ = 1⇒ A
2
e

2κ x
dx

−∞

0

∫ + A
2
e

−2κ x
dx

0

∞

∫ = 1

A
2 e

2κ x

2κ
−∞

0

+
e

−2κ x

−2κ
0

∞











= 1⇒ A
2

(1− 0) − (0 −1)[ ] = 2κ

A
2 = 2κ

 

wave function: ϕ x( ) =
2κ e

κ x
x < 0

2κ e
−κ x

x > 0





  
where  

(Still need E) 

 

Using the result from part (a)(i) to evaluate the discontinuity of the derivative: 

 

 
Energy:  

 
 

(a)(iii) 

There is only one bound state solution.  Never zero.  In a finite square well potential (of 

which the delta function is the infinitely narrow, infinitely deep limit) there are a finite 

number of solutions.  In the infinite square well, there are an infinite number.   

 

 



(b)((i) 

As before, away from the origin, V(x) = 0. 

 

 

The situation described is represented by a piecewise wave function 

ϕ x( ) =
e

ikx + re
−ikx

x < 0

te
ikx

x > 0






.  

For E > 0, k is real, so this is a superposition of a positive-traveling (eikx) incident wave 

(amplitude 1) and a negative-traveling (e-ikx) reflected wave (amplitude |r|<1) on the left 

of the barrier and a positive-traveling transmitted wave (amplitude |t|<1) on the right.   

 

Continuity of the wave function at x = 0:                          

 

The derivative is 

dϕ x( )
dx

=
ike

ikx + −ikre
− ikx

x < 0

ikte
ikx

x > 0






 

 

Use the same technique as in (a)(i) to evaluate the discontinuity in the derivative.  

 

Take the limit ε -> 0. The wave function is continuous at x=0, but the derivative is not. 

 

 

Solve simultaneously:   

1+ r = t

1+ r = t

ikt − ik(1− r) = β 1+ r( )



 

ik 1+ r( ) − ik(1− r) = β 1+ r( )

⇒ 2ik − β( )r = β

⇒ r =
β

2ik − β
=

β

4k2 + β 2
e

iarctan
2k

β








and

t = 1+ r =
2ik

2ik − β
=

4k
2

4k
2 + β 2

e
i arctan −

2k

β








 

 

(b)(ii) 

r and t (the amplitude reflection and transmission coefficients) are complex, so there is a 

phase change upon reflection that is in general different from 0 or π.  They do not sum to 

1.  It is R and T, the intensity reflection and transmission coefficients, that should sum to 

1 to preserve particle number.  Check that this is indeed so.  With  

R ≡ r
2
;T ≡ t

2

R + T =
β

2ik − β

2

+
2ik

2ik − β

2

=
β 2

4k2 + β 2
+

4k
2

4k2 + β 2
= 1

 

 

Note that the above definition of T is special to this case of a symmetric potential and is 

defined more generally if the potential is asymmetric.  The result R+T = 1 is general, 

however. 
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Consider a reversible refrigerator consisting of a solid at temperature T , a heat engine, and a high
temperature reservoir at room temperature TR.

�� ��������	�
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�

Goal is to cool the solid from TR to some lower temperature. The efficiency of the heat engine at
the solid temperature T is

η =
−dW
−dQ′

=
TR − T
TR

,

where W is the work done on the refrigerator and Q′ is the heat flowing from the engine into the
room temperature reservoir. The heat capacity of the solid is C = AT 3, where A is a constant.

(a) Find the work W required to cool this solid from room temperature TR to T ∼= 0.

(b) What are the changes in entropy and internal energy of the solid for the cooling?

(c) Show that the changes in internal energy and entropy of the high temperature reservoir satisfy
the relation, ∆UR = TR∆SR.
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Consider a reversible refrigerator consisting of a solid at temperature T , a heat engine, and a high
temperature reservoir at room temperature TR.

�� ��������	�
���
��
��
���


�����

�����������

�

Goal is to cool the solid from TR to some lower temperature. The efficiency of the heat engine at
the solid temperature T is

η =
−dW
−dQ′

=
TR − T
TR

,

where W is the work done on the refrigerator and Q′ is the heat flowing from the engine into the
room temperature reservoir. The heat capacity of the solid is C = AT 3, where A is a constant.

(a) Find the work W required to cool this solid from room temperature TR to T ∼= 0.

Solution: .
An amount of work W is done on the refrigerator, while an amount of heat Q flows from
the solid into the heat engine and an amount of Q′ flows from the engine into the room
temperature reservoir. Since the energy must be conserved, Q′ = Q+W .

�� ��������	�
���
��
��
���


�����

�����������

�

�′

�

�

The efficiency of the heat engine at the solid temperature T is

η =
−dW
−dQ′

=
TR − T
TR

. (48)

This gives

∆Q = ∆Q′ −∆W =

(
1

η
− 1

)
∆W =

T

TR − T
∆W. (49)
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The amount of heat required for an infinitesimal temperature change from T to T −∆T in
the solid is ∆Q = C∆T = AT 3∆T and hence the amount of work for this cooling is

∆W =
TR − T
T

∆Q = (TR − T )AT 2∆T (50)

∆T (> 0) is defined in the direction of cooling, and hence

dW

dT
= −A(TR − T )T 2. (51)

Therefore the amount of work needed to cool the solid to T ∼= 0 is

W = −A
∫ 0

TR

(TR − T )T 2dT =
1

12
AT 4

R. (52)

(b) What are the changes in entropy and internal energy of the solid for the cooling?

Solution: .
Using (

∂S

∂T

)
V

=
1

T

(
∂U

∂T

)
V

=
C

T
= AT 2, (53)

we find the change in entropy of the solid

∆Ss =

∫ 0

TR

AT 2dT = −1

3
AT 3

R. (54)

The change in internal energy of the solid is

∆Us =

∫ 0

TR

CdT =

∫ 0

TR

AT 3dT = −1

4
AT 4

R. (55)

(c) Show that the changes in internal energy and entropy of the high temperature reservoir satisfy
the relation, ∆UR = TR∆SR.

Solution: .
The change in internal energy of the high temperature reservoir is

∆UR = −∆US +W =
1

3
AT 4

R (56)

and the entropy change is

∆SR = −∆SS =
1

3
AT 3

R (57)

Therefore,
∆UR = TR∆SR. (58)
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Consider two non-relativistic, identical, non-interacting spin-1/2 particles of mass m that are con-
fined in a 1-dimensional infinite square well of width L.

(a) Construct the two-particle singlet eigenstates and give the energy eigenvalues. What is the
lowest possible energy? Discuss any degeneracy.

(b) Repeat (a) for the two-particle triplet eigenstates.

Now assume that an interaction between the particles is turned on of the form
Vint(x) = Vobδ(x1 − x2) where b is a characteristic length and Vo is the interaction strength.

(c) Calculate the first-order correction to the energy of the states found in (a) and (b). You
do not need to evaluate integrals, but you must identify whether they are zero or non-zero.

(d) Provide a simple physical interpretation of the result in (c).

——————————
Helpful information:

Please assume you know the solution to the one-particle problem:

φn =
√

2
L sin

(
nπx
L

)
|±〉, where |+〉 means spin-up and |−〉 means spin down.

En = n2 ~2π2

2mL2 , n=1, 2, 3, . . .



Graduate quantum mechanics 

Consider two non-relativistic, identical, non-interacting spin-1/2 particles of mass m 

that are confined in a 1-dimensional infinite square well of width L.   

(a) Construct the two-particle singlet eigenstates and give the energy eigenvalues. 

What is the lowest possible energy?  Discuss any degeneracy. 

(b) Repeat (a) for the two-particle triplet eigenstates. 

Assume that an interaction between the particles is turned on of the form

Vint x( ) = V0bδ x1 − x2( ) where b is a characteristic length and V0 is the interaction strength. 

(c) Calculate the first-order correction to the energy of the states found in (a) and (b).  

You don’t need to evaluate integrals, but you must identify whether they are zero or non-

zero. 

(d) Provide a simple physical interpretation of the result in (c). 

Hint: 

Assume you know the solution to the one-particle problem:  

ϕn x( ) =
2

L
sin

nπ x

L







±   where +  means spin-up and −  means spin down. 

  n = 1,2,3 … 

 

  



Graduate quantum mechanics -SOLUTION 

Let the position and spin coordinates of particle 1 be x1 and σ1 and those of particle 2, x2  

and σ2.  

The Hamiltonian is spin independent, so the spin and space parts of the two-particle wave 

function separate.  ψ x1, x2;σ 1,σ 2( ) =ψ space x1, x2( )ψ spin σ1,σ 2( ).   

A two-particle eigenstate for identical fermions must be antisymmetic under interchange 

of the coordinates of particle 1 with those of particle 2.  That is 

ψ x1, x2;σ 1,σ 2( ) = −ψ x2 , x1;σ 2 ,σ1( )   

If the total wave function is antisymmetric under particle interchange and it separates into 

two functions, then one of the functions must be symmetric and the other antisymmetric. 

(a) The singlet state has the spin part antisymmetric (AS) under particle interchange: 

ψ spin

AS σ 1,σ 2( ) =
1

2
+ − − − +( )where the notation is particle1, particle2 . 

The space part of the function must be symmetric (S) under particle interchange. 

ψ space

S
x1, x2( ) =

1

2
ϕn x1( )ϕm x2( ) +ϕn x2( )ϕm x1( )( ) 

The lowest energy state is n=1, m=1: 

ψ space

S
x1, x2( ) = ϕn=1 x1( )ϕm=1 x2( )   

Both particles are in the (spatial) single particle ground state.  The energy is: 

 

The singlet state is non-degenerate.  There is only one possible AS spin wave function, 

and one possible S space wave function. 

(b) For the triplet state, there are 3 spin states and they are S under particle interchange: 

ψ spin

S σ 1,σ 2( ) =
1

2
+ − + − +( )

+ +

− −

 



The space part of the function must be AS under particle interchange  

ψ space

AS
x1, x2( ) =

1

2
ϕn x1( )ϕm x2( ) −ϕn x2( )ϕm x1( )( ) 

If m=n, then the space part is zero, which is unphysical, so we must have n≠m, and the 

lowest possibility is n=1, m=2. 

The energy is  

The state is 3-fold degenerate (3 spin states). The n=2, m=1 possibility is not a new space 

state. 

Assume that an interaction between the particles is turned on of the form

Vint x( ) = V0bδ x1 − x2( ) where b is a characteristic length and V0 is an interaction strength. 

(c) First order perturbation theory: energy correction to a state n is En

(1) = ψ n

(0)
H ' ψ n

(0)
 

ψ n

(0) is the unperturbed state and H' is the perturbation Hamiltonian.  

H' is independent of spin, so the spin contribution to the integral integrates to 1 because it 

the spin part of the wave function is properly normalized. 

Space part for the singlet state is                ψ space

S
x1, x2( ) = ϕn=1 x1( )ϕm=1 x2( )  

En

(1) = dx1 dx2
x2 =0

L

∫x1=0

L

∫ ψ space

S
x1, x2( )

*
bV0δ x1 − x2( )ψ space

S
x1, x2( )





= bV0 dx1 dx2ϕ1

* x1( )ϕ1

* x2( )δ x1 − x2( )ϕ1 x1( )ϕ1 x2( )
x2 =0

L

∫x1=0

L

∫

= bV0 dx1ϕ1

*
x1( )ϕ1

*
x1( )ϕ1 x1( )ϕ1 x1( )

x1=0

L

∫

= bV0 dx1 ϕ1 x1( )
2

ϕ1 x1( )
2

x1=0

L

∫

 

To evaluate the integral, we need the wave functions ϕn x( ) =
2

L
sin

nπ

L
x







, but it is 

clear from the positive definite integrand the result is non-zero. 

 

For the triplet states, the spin parts again integrate to 1, and the spatial part is: 



E
n

(1) = dx1 dx2 ψ
space

AS x1, x2( )
*
bV0δ x1 − x2( )ψ space

AS x1, x2( )



x2 =0

L

∫x1=0

L

∫

= bV0 dx1 dx2

ϕn x1( )ϕm x2( ) −ϕn x1( )ϕm x2( ){ }
δ x1 − x2( ) ϕn x1( )ϕm x2( ) −ϕn x1( )ϕm x2( ){ }













x2 =0

L

∫x1=0

L

∫

= bV0 dx1 ϕn x2( )ϕm x2( ) −ϕn x2( )ϕm x2( ){ } ϕn x2( )ϕm x2( ) −ϕn x2( )ϕm x2( ){ } x1=0

L

∫

= bV0 dx1 0{ } 0{ } 
x1=0

L

∫
= 0

 . 

(d) Provide a simple physical interpretation of the result in (c). 

In the spin singlet state, the particles are both in the spatial ground state, so there is a 

finite probability to find them at the same location where they interact (the interaction 

potential is active only when the particles are at the same location). Thus there is a finite 

interaction energy.  However, in the spin triplet state, the particle probability density is 

zero at x1 = x2, so the particles never feel the interaction potential and there is no 

additional energy. 
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Two masses m1 and m2 are connected to each other by a spring of constant k2, and mass m1 is
connected to a fixed support by another spring with spring constant k1. Assume motion is allowed
in a horizontal straight line from or toward the support, with no friction as shown in the figure.
Let x1 and x2 represent the position of m1 and m2, respectively, relative to the equilibrium of the
positions of the masses (i.e. when springs are not stretched).

(a) Derive an expression for the frequencies of characteristic small-amplitude oscillation in terms
of the above parameters.

(b) Show that the frequencies are always real, so that the system always has stable oscillations.

(c) Let k1 = k2 = k and m1 = m2 = m. What are both the characteristic frequencies and normal
modes in this case?

(d) Using the results from part c, find the resulting trajectories for both masses (i.e. x1(t) and
x2(t)) . Assume that at some initial time, the left mass is at its equilibrium position, but the
right mass is pulled out a distance ao from its equilibrium position.
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Two masses m1 and m2 are connected to each other by a spring of constant k2, and mass m1 is
connected to a fixed support by another spring with spring constant k1. Assume motion is allowed
in a horizontal straight line from or toward the support, with no friction as shown in the figure.
Let x1 and x2 represent the position of m1 and m2, respectively, relative to the equilibrium of the
positions of the masses (i.e. when springs are not stretched).

(a) Derive an expression for the frequencies of characteristic small-amplitude oscillation in terms
of the above parameters.

Solution: .
This problem may solved using a Hamiltonian energy approach or using Newtonian mechanics
(i.e. F = mẍ). Using Newtonian mechanics we can readily write by inspection that,

m1ẍ1 = −(k1 + k2)x1 + k2x2 (59)

m2ẍ2 = k2x1 − k2x2 (60)

(61)

Assume the solution maybe obtained with an exponential of form x1(t) = A1 exp iωt and
x2(t) = A2 exp iωt, and we may solve the coupled ODEs by method of determinants where
the matrix equation is ẍ = Cx or more explicitly(
ẍ1
ẍ2

)
=

(
−k1+k2m1

k2
m1

k2
m2

− k2
m2

)(
x1
x2

)
We can now solve for the eigenvalues (or characteristic frequencies) of matrix C by,

det
(
C − ω2I

)
=

(
k1 + k2
m1

− ω2

)(
k2
m2
− ω2

)
− k22
m1m2

(62)

⇔ ω2 =
1

2

k2m1 + (k1 + k2)m2

m1m2
±

√(
k2m1 + (k1 + k2)m2

m1m2

)2

− 4k1k2
m1m2

 (63)

(b) Show that the frequencies are always real, so that the system always has stable oscillations.

Solution: .
By inspection of the solution ω cannot be a negative real number, so we need only show that
the discriminant is positive (i.e. the expression in the square root is positive). Expanding the
determinant we need to prove the following inequality,(

k22m
2
1 + k21m

2
1 + k22m

2
2 + 2k2m1k1m2 + 2k1k2m

2
2 + 2k22m1m2

)
≥ 4k1k2m1m2 (64)

⇔ (k2m1 − k1m2)
2

+ k22m
2
2 + 2k1k2m

2
2 + 2k22m1m2 ≥ 0 (65)
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The last inequality is true by inspection, therefore the frequencies in this system are real and
positive. Hence the oscillations must be stable.

(c) Let k1 = k2 = k and m1 = m2 = m. What are both the characteristic frequencies and normal
modes in this case?

Solution: .

If k1 = k2 = k and m1 = m2 = m, then the characteristic frequencies are ω2 = 1
2

(
3±
√

5
)
k
m .

Solving for the normal modes (eigenvectors), we obtain

det
(
C − ω2I

)(x1
x2

)
= 0

Where are matrix C is now simply 1
m

(
2k −k
−k k

)
Solving for the eigenvectors, we find that the in-phase normal mode is x2 = 1

2

(√
5 + 1

)
x1

and the out of phase normal mode is x2 = − 1
2

(√
5− 1

)
x1. The normal modes Q1 and Q2

are Q1 = x1 − 1
2 (
√

5− 1)x2 and Q2 = x1 + 1
2 (
√

5 + 1)x2

(d) Using the results from part c, find the resulting trajectories for both masses (i.e. x1(t) and
x2(t)) . Assume that at some initial time, the left mass is at its equilibrium position, but the
right mass is pulled out a distance ao from its equilibrium position.

Solution: .
At t = 0, x1 = 0 and x2 = ao. The general solution will be a superposition of the time-
dependent normal mode motion, Q1(t), Q2(t). At t = 0, Q1 = x1 − 1

2 (
√

5− 1)x2 = − 1
2 (
√

5−
1)ao and Q2 = x1 + 1

2 (
√

5 + 1)x2 = 1
2 (
√

5 + 1)ao. Solving this system of equations for x1 and
x2 in general we get,

x1(t) =
1

2
√

5
(
√

5− 1)Q2(t) +
1

2
√

5
(
√

5 + 1)Q1(t) (66)

x2(t) =
1√
5

(Q2(t)−Q1(t)) (67)

Where Q1(t) and Q2(t) are just the time dependent normal modes (solved for above using
our initial conditions) to obtain,

Q1(t) = −1

2
(
√

5− 1)ao cosω1t (68)

Q2(t) =
1

2
(
√

5 + 1)ao cosω2t (69)

1 and ω2 are the respective characteristic frequencies of the system.
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A non-conducting ring of radius a and mass M lies on a frictionless surface. The ring carries a total
charge Q. The charge is immobile and uniformly distributed. Before t = 0, the ring is stationary
in a magnetic field B = Boẑ, where the z-axis is perpendicular to the plane of the ring. Starting at
t = 0, the magnetic field is given by B(t) = Bo exp(−αt)ẑ.

(a) What is the torque on the ring when t > 0?

(b) Find the angular momentum of the ring as t→∞. Explain the dependence of your result on
α.






