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OSU Physics Department

Comprehensive Examination #117

Monday, September 30 and Tuesday, October 1, 2013

Fall 2013 Comprehensive Examination

PART 1, Monday, September 30, 9:00am

General Instructions

This Fall 2013 Comprehensive Examination consists of eight problems of
equal weight (20 points each). It has four parts. The first part (Problems 1-2)
is handed out at 9:00 am on Monday, September 30, and lasts three hours. The
second part (Problems 3-4) will be handed out at 1:00 pm on the same day
and will also last three hours. The third and fourth parts will be administered
on Tuesday, October 1, at 9:00 am and 1:00 pm, respectively. Work carefully,
indicate your reasoning, and display your work clearly. Even if you do not
complete a problem, it might be possible to obtain partial credit—especially
if your understanding is manifest. Use no scratch paper; do all work in the
bluebooks, work each problem in its own numbered bluebook, and be certain
that your chosen student letter (but not your name) is inside the back cover
of every booklet. Be sure to make note of your student letter for use in the
remaining parts of the examination.

If something is omitted from the statement of the problem or you feel there
are ambiguities, please get up and ask your question quietly and privately, so
as not to disturb the others. Put all materials, books, and papers on the floor,
except the exam, bluebooks and the collection of formulas and data distributed
with the exam. Calculators are not allowed except when a numerical answer is
required—calculators will then be provided by the person proctoring the exam.
Please return all bluebooks and formula sheets at the end of the exam. Use
the last pages of your bluebooks for “scratch” work, separated by at least one
empty page from your solutions. “Scratch” work will not be graded.
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Problem 1 Monday morning 3

Consider a rope wrapped around a cylindrical bar, as shown in the figure below.

(a) Solve for the minimum tension T needed on the left-hand side of the figure
in order to prevent the massM from slipping down. You may assume that
the static coefficient of friction µ is the same as the dynamic coefficient of
friction.

(b) Estimate how many times you would need to wrap a rope around the bar
in order to hold up a car. You may assume a coefficient of friction of 1.0.
Make a reasonable estimate for the weight of a car.
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Consider a rope wrapped around a cylindrical bar, as shown in the figure below.

(a) Solve for the minimum tension T needed on the left-hand side of the figure
in order to prevent the massM from slipping down. You may assume that
the static coefficient of friction µ is the same as the dynamic coefficient of
friction.

Solution: .
We know that the frictional force is proportional to the normal force, so
we need to begin by finding the normal force, which will naturally be a
function of angle, as is the tension. We just need to do some geometry in
order to see how they are related.

Note that I have assumed (as instructed) that the friction is at its maxi-
mum force in order to find the maximum tension that can be supported.
By considering that the net force on this small piece of rope must be zero,
we can see that

N = T sin dθ (1)

= Tdθ (2)

T + dT = T − µN (3)

= T − µTdθ (4)

dT

T
= −µdθ (5)
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Now that we’ve found a formula for how much the tension changes with
angle, we just need to integrate in order to find the tension difference for
a finite angle θ. ∫ T (θ)

T (0)

dT

T
= −

∫ θ

0

µdθ (6)

ln

(
T (θ)

T (0)

)
= −µθ (7)

T (θ) = T (0)e−µθ (8)

This tells us that the minimum tension exponentially decays with the
angle of contact the rope has with the bar:

T (∆θ) =Mge−µ∆θ (9)

(b) Estimate how many times you would need to wrap a rope around the bar
in order to hold up a car. You may assume a coefficient of friction of 1.0.
Make a reasonable estimate for the weight of a car.

Solution: .
My car weighs about 3000 lb., and I weight about 150 lb, which is 20 times
less. So keeping mind that µ ≈ 1 I need to find

20 = eθ (10)

θ = ln 20 (11)

Since e ≈ 2 (playing it safe), we need θ ≈ 5, which would give us a ratio
of greater than 32, so I have a double margin. Since 5 < 2π, wrapping the
rope around the bar one full time should be plenty to allow me to hold up
my car.



Problem 2 Monday morning 6

Consider a single particle in a 1D simple harmonic potential.

(a) i. Write out the full time-dependent Schrodinger equation with the ap-
propriate potential for this system in the Hamiltonian.

ii. Use separation of variables (e.g. Ψ(x, t) = ψ(x)ϕ(t)) to write an energy
eigenvalue equation. Finally, re-express the resulting time-independent
Schrodinger equation in terms of raising and lowering operators.

iii. What are the energies for the ground, 1st and 2nd excited states?
(simply state them, do not solve)

iv. Why is the ground energy state not zero? Explain qualitatively the
origin of this zero-point energy.

(b) Anharmonic SHO. Suppose our simple harmonic oscillator is subjected
to an anharmoinc perturbation of the form H1 = λx4. Evaluate the first
order energy correction to the nth state. (show all work)

(c) Kicked SHO. Suppose instead a quantum simple harmonic oscillator is
prepared in ground state at time t = 0. Our oscillator now has a weak
constant electric perturbation, H1 = −eEox that acts only over a
time period 0 < t < T . The applied perturbation is zero otherwise.

i) Use first-order time-dependent perturbation theory to calculate the
probability of making a transition to the first excited state as t → ∞.
(show all work)

ii) Simplify your calculated transition probability P0→1 to show for what
values of T is the transition maximal (assume a constant amplitude Eo

and fixed frequency ω).

iii) What does first order perturbation theory tell us is the probability of
the transition from states n = 0 to n = 2?



Solutions to problem 2 Monday morning 7

Consider a single particle in a 1D simple harmonic potential.

(a) i. Write out the full time-dependent Schrodinger equation with the ap-
propriate potential for this system in the Hamiltonian.

ii. Use separation of variables (e.g. Ψ(x, t) = ψ(x)ϕ(t)) to write an energy
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Problem 3 Monday afternoon 10

A metal has N conduction electrons per unit volume. The mean number of

particles in a state of energy ϵ = ~2k2

2m at temperature T is given by the Fermi-
Dirac distribution

f(ϵ) =
1

exp[(ϵ− µ)/kBT ] + 1

(a) Find the “Fermi energy” or the chemical potential µ0 at the absolute zero
temperature, T = 0. Note that one electron state exclusively occupies the
k-space volume of (2π)3/V , where V is the volume of the electron system
in the real space.

(b) Find the mean energy E of the electron gas at T = 0. What is the electron
gas pressure P?

(c) The Fermi energy is only slightly different from µ0, i.e., µ ∼= µ0 ≫ kBT ,
at room temperature. Estimate the heat capacity of the metal per unit
volume at T .
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A metal has N conduction electrons per unit volume. The mean number of

particles in a state of energy ϵ = ~2k2

2m at temperature T is given by the Fermi-
Dirac distribution

f(ϵ) =
1

exp[(ϵ− µ)/kBT ] + 1

(a) Find the “Fermi energy” or the chemical potential µ0 at the absolute zero
temperature, T = 0. Note that one electron state exclusively occupies the
k-space volume of (2π)3/V , where V is the volume of the electron system
in the real space.

Solution: .
The chemical potential µ0 is determined by the particle number conser-
vation. Since the total number of electrons N is the sum over all levels of
the mean number in each level,

N =
∑
i

f(ϵi) =
∑
i

1

exp[(ϵi − µ)/kBT ] + 1

In a gas of free and independent electrons, energies are specified by the
wave vector k,

ϵ(k) =
~2k2

2m
,

where each energy level includes the two spin states. Thus, the sum over
the energy levels can be transformed to the integration over the wave
vector:

N = 2

∫
V d3k

(2π)3
f (ϵ(k)) .

Since the integrand depends on k only through the energy ϵ, we evaluate
the integral in spherical coordinates and change variables from k to ϵ:

N = V

∫ ∞

0

f (ϵ(k))
k2dk

π2
= V

∫ ∞

∞
f(ϵ)g(ϵ)dϵ,

where the density of energy levels per unit volume

g(ϵ) =

{
m

~2π2

√
2mϵ
~2 for ϵ > 0

0 for ϵ < 0

At T = 0, the Fermi-Dirac distribution is

f(ϵ) =

{
1 for ϵ ≤ µ0

0 for ϵ > µ0
(12)
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Then,

N = V

∫ µ0

0

√
2m3/2

~3π2

√
ϵdϵ =

2
√
2m3/2

3~3π2
µ
3/2
0

Thus,

µ0 =
~2

2m
(3π2N/V )2/3 =

~2

2m
(3π2N)2/3 at V = 1.

(b) Find the mean energy E of the electron gas at T = 0. What is the electron
gas pressure P?

Solution: .
The mean energy is

E = V

∫ ∞

∞
ϵf(ϵ)g(ϵ)dϵ = V

∫ µ0

0

√
2m3/2

~3π2
ϵ3/2dϵ =

V

5π2

2m3/2

~2
µ
5/2
0

Therefore,

E =
2m3/2

5π2~2
µ
5/2
0 at V = 1.

The pressure is

P =

(
∂E

∂V

)
T

=
2m3/2

5π2~2
µ
5/2
0

(c) The Fermi energy is only slightly different from µ0, i.e., µ ∼= µ0 ≫ kBT ,
at room temperature. Estimate the heat capacity of the metal per unit
volume at T .

Solution: .
Since µ ∼= µ0 ≫ kBT at room temperature, the Fermi-Dirac distribution
is

f(ϵ) ∼=
{

1 for ϵ≪ µ0

0 for ϵ≫ µ0
(13)
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As shown in the figure, f(ϵ) varies between 1 and 0 only if ∆ϵ = |ϵ−µ0| <
kBT . This means that only the electrons within the energy range can
be thermally excited and participate in thermal transport. The effective
number of electrons involving the heat conduction is estimated as

∆N ≈ g(µ)∆ϵ ≈ kBT

µ0
N

Since the heat capacitance per a free particle is 3
2kB , the heat capacitance

for the N -particle system is estimated as

CV ≈ 3

2
kB∆N ≈ 3Nk2BT

2µ0
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Four identical charges Q are at a distance R from the origin. They are positioned
on the corners of a regular tetrahedron, their positions are given by R⃗i for
i = 1, 2, 3, 4. Remember that a regular tetrahedron is formed by four of the
eight corners of a cube. We will make use of the expansion

1

| r⃗ − r⃗ ′|
=
∑
lm

4π

2l + 1

r<
l

r> l+1
Ylm(r̂)Y ∗

lm(r̂′)

You will use this expansion to study the potential V (r⃗) near the origin, when
we have r ≪ R.

(a) What is the potential at the origin?

(b) For this particular charge distribution, how do the coefficients in the small
r expansion relate to the multipole moments one uses in the large r ex-
pansion?

(c) What is the electric field at the origin and how does it relate to the ex-
pansion you found?

(d) The quadrupole moment is best expressed in Cartesian coordinates via

Qµ,ν =
∑

i

(
3(R⃗i)µ(R⃗i)ν − δµ,ν |R⃗i|2

)
where µ, ν = x, y, z labels the com-

ponents. Evaluate the quadrupole moment in this form, and use it to find
the electric field gradient at the origin.
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Four identical charges Q are at a distance R from the origin. They are positioned
on the corners of a regular tetrahedron, their positions are given by R⃗i for
i = 1, 2, 3, 4. Remember that a regular tetrahedron is formed by four of the
eight corners of a cube. We will make use of the expansion

1

| r⃗ − r⃗ ′|
=
∑
lm

4π

2l + 1

r<
l

r> l+1
Ylm(r̂)Y ∗

lm(r̂′)

You will use this expansion to study the potential V (r⃗) near the origin, when
we have r ≪ R.

(a) What is the potential at the origin?

(b) For this particular charge distribution, how do the coefficients in the small
r expansion relate to the multipole moments one uses in the large r ex-
pansion?

(c) What is the electric field at the origin and how does it relate to the ex-
pansion you found?

(d) The quadrupole moment is best expressed in Cartesian coordinates via

Qµ,ν =
∑

i

(
3(R⃗i)µ(R⃗i)ν − δµ,ν |R⃗i|2

)
where µ, ν = x, y, z labels the com-

ponents. Evaluate the quadrupole moment in this form, and use it to find
the electric field gradient at the origin.

Solution: .

At the origin the contribution to the potential from all four charges is the
same, so we have

V (⃗0) = 4
1

4πϵ0

Q

R

In general we have

V (r⃗) =
1

4πϵ0

∫
1

| r⃗ − r⃗ ′|
ρ(r⃗ ′)d3r′

and with our expansion this yields for r ≪ R

V (r⃗) =
1

4πϵ0

∫ ∑
lm

4π

2l + 1

r<
l

r> l+1
Ylm(r̂)Y ∗

lm(r̂′)ρ(r⃗ ′)d3r′

V (r⃗) =
1

4πϵ0

∑
lm

4π

2l + 1
Ylm(r̂)

∫
r l

R l+1
Y ∗
lm(r̂′)ρ(r⃗ ′)d3r′

With point charges at positions R⃗i, all a distance R from the origin, we have
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V (r⃗) =
Q

ϵ0

∑
lm

rl

2l + 1
Ylm(r̂)

1

R l+1

∑
i

Y ∗
lm(R̂i)

The expansion at large r looks identical, with the terms rl and Rl+1 inter-
changes. The multipoles in this case are

qlm = QRl
∑
i

Y ∗
lm(R̂i)

and hence we have for small r

V (r⃗) =
1

ϵ0

∑
lm

rl

2l + 1
Ylm(r̂)

1

R 2l+1
qlm

Including factors of 4π and/or 2l + 1 in the definitions of the multipoles is
OK. In our case, due to the fact that all charges are at the same distance from
the origin, the small r and large r expansion are closely related.

The electric field at the origin is related to the l=1 terms, and hence to the
electric dipole moment of the system. In Cartesian coordinates this is

p⃗ = Q
∑
i

R⃗i

This is zero. One can see this by using the fact that we can take half of the
corners of a cube to make a tetrahedron, so we can represent the positions of
the charges by

(a, a, a) , (−a,−a, a) , (a,−a,−a) , (−a, a,−a)

One can also use physics, noting that a 120 degree rotation around a direction
towards a charge produces the same tetrahedron. That means that the dipole of
the system must point towards that charge. But since that charge is arbitrary,
the dipole must point towards all charges, and only the zero vector does that.

Therefore, the electric field at the origin is zero.
The quadrupole moment can be calculated component by component, using

the positions given above

Qx,x =
∑
i

(
3(R⃗i)

2
x − |R⃗i|2

)
= 0

Qx,y =
∑
i

3(R⃗i)x(R⃗i)y = 0

and it is easy to show that they are all zero. There is no quadrupole mo-
ment for this system. Near the origin the second order term in the potential is
proportional to ∑

µ

∑
ν

Qµ,νxµxν
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this gives for the electric field

Eµ ∝ −
∑
ν

Qµ,νxν

and hence the components of the field gradient at the origin are proportional
to the quadrupole moment. Therefore, they are zero. At the center of our
tetrahedron there is no field gradient, the system has too high a symmetry. One
can also obtain this result by applying symmetry.
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Consider a ladder leaning against a frictionless wall with its foot on a frictionless
floor. The ladder is initially almost vertical when it begins to slip. At what
height does the ladder lose contact with the wall?
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Consider a ladder leaning against a frictionless wall with its foot on a frictionless
floor. The ladder is initially almost vertical when it begins to slip. At what
height does the ladder lose contact with the wall?

Solution: .
This problem will require us to solve the problem in a number of steps. We’ll
begin by working out the kinetic and potential energies under the assumption
that the ladder remains in contact with the wall. Then we can use energy
conservation to find out how fast it is falling at each height. From this we can
work out the net horizontal force on the ladder. When this force is zero is the
point at which the ladder leaves contact with the wall.

Potential energy

V =Mg
L

2
cos θ (14)

where θ is the angle of the ladder from the vertical, M is the mass of the ladder,
and L is its length.

Kinetic energy

Ttrans =
1
2M(ẋ2 + ẏ2) (15)

where x and y are the center of mass coordinates.

x = 1
2L sin θ (16)

ẋ = 1
2L cos θθ̇ (17)

y = 1
2L cos θ (18)

ẏ = −1
2L sin θθ̇ (19)

Putting this together, we get

Ttrans =
1
8ML2(cos2 θθ̇2 + sin2 θθ̇2) (20)

= 1
8ML2θ̇2 (21)
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The rotational kinetic energy is just a bit more work, since it requires us to
get the moment of inertia of the ladder.

I =

∫
r2dM (22)

=

∫ L/2

−L/2

x2
M

L
dx (23)

=
2

3L
M(L/2)3 (24)

= 1
12ML2 (25)

Once we have the moment of inertial, the rotational kinetic energy is easy.

Trot =
1
2Iθ̇

2 (26)

= 1
24ML2θ̇2 (27)

(28)

Adding these together we get the total kinetic energy

T = 1
8ML2θ̇2 + 1

24ML2θ̇2 (29)

= 1
6ML2θ̇2 (30)

And there we have it.

Finding θ̇ Since there is no friction, energy is conserved, and we can conclude
that

T = V (0)− V (θ) (31)

1
6ML2θ̇2 =Mg

L

2
(1− cos θ) (32)

θ̇2 = 3
g

L
(1− cos θ) (33)

θ̇ =

√
3
g

L
(1− cos θ) (34)

So there we have θ̇ as a function of θ. Alas, what we actually want is ẍ as a
function of θ. Unfortunately (as we’ll see below), that requires us to also solve
for θ̈.

Finding θ̈ Recall that the Lagrangian is

L = T − V (35)

= 1
6ML2θ̇2 −Mg

L

2
cos θ (36)
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Finding θ̈ is precisely what the Euler-Lagrange equation tends to give us.

d

dt

∂L

∂θ̇
=
∂L

∂θ
(37)

1
3ML2θ̈ = 1

2MgL sin θ (38)

θ̈ =
3

2

g

L
sin θ (39)

Finding ẍ

ẍ = 1
2L(cos θθ̈ − sin θθ̇2) (40)

= 1
2L

(
cos θ

3

2

g

L
sin θ − sin θ3

g

L
(1− cos θ)

)
(41)

= 0 (42)

Finishing it To finish this off, we set ẍ to zero, to see when the normal force
on the ladder from the wall switches to being attractive in order to force the
constraint that they remain in contact. This is the point at which the ladder
leaves the wall.

0 = 1
2L

(
cos θ

3

2

g

L
sin θ + sin θ3

g

L
(cos θ − 1)

)
(43)

=

(
cos θ

1

2
+ (cos θ − 1)

)
(44)

3
2 cos θ = 1 (45)

cos θ = 2
3 (46)

ytop = L cos θ (47)

= 2
3L (48)

So the ladder leaves the wall when its top is one-third of the way down from
where it started.
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(a) Cat in a circle Suppose Heisenberg had a house cat and a laser. One
morning, Heisenberg decides to trace the laser spot in a perfect circle on
his living room floor at a constant speed. Amazed to observe his cat
follows the beam, he calls his friend Schrodinger to tell him about it.
Schrodinger immediately inquires about the position and momentum of
the cat. Heisenberg responds ”you tell me”!

Scrodinger begins by approximating the cat as a point particle
of mass, M that is perfectly confined to a circle of radius, R1.
What does Schrodinger tell Heisenberg for:

i) The normalized time-independent wavefunction of the cat (show all
work).

ii) The allowed energy eigenvalues of the cat.

iii) Assuming the cat is confined to a circle, can Schrodinger simultane-
ously know the cat’s radius, angle (θ) and angular momentum (L) with
absolute certainty? Evaluate a commutation relation to justify your re-
sponse.

(b) Benzene as a circle Now suppose Heisenberg fires his laser at benzene
instead of a cat. Benzene is a ring-like molecule (C6H6) with a radius of
1.5×10−10 m and six π orbital electrons. Estimate what is the longest
wavelength (or lowest energy) laser that Heisenberg needs to resonantly
excite benzene (consider the Pauli exclusion principle).

(for any calculations take, me = 1× 10−30 kg and ~ = 1× 10−34 Js).

(c) The actual absorption resonance for benzene is 260 nm. Can you explain
to Schrodinger why his equations describe benzene so well, but the cat
so poorly? (Include an estimate how well you could measure the posi-
tion of a typical house cat using standard household instruments, and the
corresponding minimum uncertainty in the velocity of the cat.)

Can you identify 1-2 other reasons why Schrodinger’s analysis for both (i.)
benzene and (ii.) the cat differ from experiment?
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An isolated system consisting of a large number N of weakly interacting parti-
cles, each of spin-1/2 and magnetic moment µm, is in the presence of an external
magnetic field B. The energy of the system is E = −(n1 − n2)µmB, where n1
is the number of spins aligned parallel to B and n2 the number of spins aligned
antiparallel to B. We consider the case for large n1 and n2 (≫ 1).

(a) What is the total number of states Ω(E) for a given energy E? Write
down an expression for lnΩ(E) as a function of E and simplify it using
the approximation, lnn! ∼= n lnn− n for large n.

(b) Obtain the parameter, β = ln Ω(E)
∂E , and express the energy E(T,B) as a

function of the absolute temperature T and the magnetic field B. Find
the energy E at the extreme temperatures, T = 0 and T → ∞, for a finite
magnetic field B, and justify your answers using physical intuitions.

(c) Find the total magnetic moment M(T,B) of this system as a function of
T and B.

(d) The system in thermal equilibrium has the initial energy Ei. Another
isolated system consisting of N ′(≫ 1) particles of the initial energy E′

i is
then placed in thermal contract with it. Find the energies, Ef and E′

f , and
the temperature, Tf , of the two systems in the final thermal equilibrium.
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An isolated system consisting of a large number N of weakly interacting parti-
cles, each of spin-1/2 and magnetic moment µm, is in the presence of an external
magnetic field B. The energy of the system is E = −(n1 − n2)µmB, where n1
is the number of spins aligned parallel to B and n2 the number of spins aligned
antiparallel to B. We consider the case for large n1 and n2 (≫ 1).

(a) What is the total number of states Ω(E) for a given energy E? Write
down an expression for lnΩ(E) as a function of E and simplify it using
the approximation, lnn! ∼= n lnn− n for large n.

Solution: .
The particle number is N = n1+n2, and hence the energy can be written
as

E = (N − 2n1)µmB for n1 = 1, 2, · · · , N

The total number of possible states for n1 is

Ω(n1) =
N !

n!(N − n1)!

where n1 = N/2− E/2µmB. Therefore,

Ω(E) =
N !(

N
2 − E

2µmB

)
!
(

N
2 + E

2µmB

)
!

Taking the logarithm of Ω and using the approximation lnn! ∼= n lnn−n,
we obtain

lnΩ(E) = lnN !− lnn1!− lnn2!
∼= (N lnN −N)− (n1 lnn1 − n1)− (n2 lnn2 − n2)

= N lnN − n1 lnn1 − n2 lnn2

= N lnN −
(
N

2
− E

2µmB

)
ln

(
N

2
− E

2µmB

)
−
(
N

2
+

E

2µmB

)
ln

(
N

2
+

E

2µmB

)

(b) Obtain the parameter, β = ln Ω(E)
∂E , and express the energy E(T,B) as a

function of the absolute temperature T and the magnetic field B. Find
the energy E at the extreme temperatures, T = 0 and T → ∞, for a finite
magnetic field B, and justify your answers using physical intuitions.
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Solution: .
The parameter β = 1

kBT , where kB is the Boltzmann constant.

β =
∂

∂E
lnΩ(E)

=
1

2µmB
ln

(
N

2
− E

2µmB

)
+

1

2µmB

− 1

2µmB
ln

(
N

2
+

E

2µmB

)
− 1

2µmB

=
1

2µmB
ln

(
N
2 − E

2µmB

N
2 + E

2µmB

)

Taking exponential on both sides, we get

e2βµmB =

N
2 − E

2µmB

N
2 + E

2βµmB

⇒ E = NµmB

(
1− e2βµmB

1 + e2βµmB

)
= −NµmB tanh(βµmB)

Therefore,

E = −NµmB tanh

(
µmB

kBT

)
(i) At T = 0, 1

T → ∞
Using the limiting behavior, tanh(x) → 1 for x→ ∞, we can get

E(T = 0) = −NµmB

At the absolute zero temperature, all the particles must be in the ground
state, i.e., n1 = N and n2 = 0. Therefore, E = −NµmB at T = 0.

(ii) For T → ∞, 1
T → 0

E(T → ∞) = −NµmB tanh(0) = 0.

When the temperature is very high, the magnetic momenta of the particles
are randomly oriented, i.e., n1 ∼= n2 ∼= N/2. Therefore, E(T → ∞) =
−(n1 − n2)µmB ∼= 0.

(c) Find the total magnetic moment M(T,B) of this system as a function of
T and B.
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Solution: .
The total magnetic moment is the sum of the spin-up (n1µm) and spin-
down (−n2µm) moments:

M = n1µm + n2(−µm) = (n1 − n2)µm

From the energy relation,

E = −(n1 − n2)µmB = −MB ⇒M = −E
B

Therefore,

M = Nµm tanh

(
µmB

kBT

)
(d) The system in thermal equilibrium has the initial energy Ei. Another

isolated system consisting of N ′(≫ 1) particles of the initial energy E′
i is

then placed in thermal contract with it. Find the energies, Ef and E′
f , and

the temperature, Tf , of the two systems in the final thermal equilibrium.

Solution: .
The total number of states of the combined system is

ΩT (E) = Ω(E)Ω′(E0 − E)

where the total energy, E0 = Ei + E′
i

At the thermal equilibrium, βf = β′
f :

∂

∂E
lnΩ(E)

∣∣∣∣
E=Ef

=
∂

∂E′ lnΩ(E
′)

∣∣∣∣
E′=E′

f

⇒ − Ef

µ2
mB

2N
= −

E′
f

µ2
mB

2N ′

⇒ E′
f =

N ′

N
Ef

The energy conservation, E′
f = E0 − Ef , leads to

E0 − Ef =
N ′

N
Ef

⇒

{
Ef = E0

1+N′
N

E′
f = E0

1+ N
N′

The temperature at the final equilibrium state is

Tf =
1

kbβf
= −µ

2
mB

2N

kBEf
= −µ

2
mB

2N

kB

1 + N ′

N

E0

= −µ
2
mB

2

kB

N +N ′

Ei + E′
i
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Space is divided into two parts. We have vacuum for z < 0 and a medium with
conductivity σ, and dielectric constant ϵrϵ0 and magnetic permeability µrµ0

where the vacuum values are ϵ0 and µ0. The conductivity σ is a real number.
In the vacuum region we have an incoming plane wave ( magnitude of the wave
vector k0 and angular frequency ω) traveling in the positive z direction, with
electric field in the x-direction, and a reflected wave in the opposite direction.
In the medium we have a wave traveling in the positive z direction and the
magnitude of the wave vector is k. There are no net charges anywhere in space.

(a) Find k as a function of ω inside the medium.

(b) Show that when the conductivity is large we have

k ≈ ±
√
ωσµr

ϵ0c2
eı

π
4

(c) What does it mean that k is complex when ω is real?

(d) What does it mean that ω is complex when k is real?

Suppose the electric field of the incoming wave is given by E⃗(r⃗, t) = E0x̂e
ı(k0z−ωt)

(e) Find the electric field component of the wave inside the medium.

(f) Find the current density in the medium.

(g) If the conductivity becomes infinitely large, will the rate of the Joule heat
produced in the material be zero, infinity, or a finite value?
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Space is divided into two parts. We have vacuum for z < 0 and a medium with
conductivity σ, and dielectric constant ϵrϵ0 and magnetic permeability µrµ0

where the vacuum values are ϵ0 and µ0. The conductivity σ is a real number.
In the vacuum region we have an incoming plane wave ( magnitude of the wave
vector k0 and angular frequency ω) traveling in the positive z direction, with
electric field in the x-direction, and a reflected wave in the opposite direction.
In the medium we have a wave traveling in the positive z direction and the
magnitude of the wave vector is k. There are no net charges anywhere in space.

(a) Find k as a function of ω inside the medium.

(b) Show that when the conductivity is large we have

k ≈ ±
√
ωσµr

ϵ0c2
eı

π
4

(c) What does it mean that k is complex when ω is real?

(d) What does it mean that ω is complex when k is real?

Suppose the electric field of the incoming wave is given by E⃗(r⃗, t) = E0x̂e
ı(k0z−ωt)

(e) Find the electric field component of the wave inside the medium.

(f) Find the current density in the medium.

(g) If the conductivity becomes infinitely large, will the rate of the Joule heat
produced in the material be zero, infinity, or a finite value?

Solution: .
The Maxwell equations inside the medium are

∇⃗ · D⃗ = 0

∇⃗ · B⃗ = 0

∇⃗ × E⃗ = −∂B⃗
∂t

∇⃗ × H⃗ =
∂D⃗

∂t
+ J⃗

The constituent relations are

D⃗ = ϵrϵ0E⃗

B⃗ = µrµ0H⃗
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and the current follows from

J⃗ = σE⃗

Inside the medium we have in general

E⃗(r⃗, t) = Eme
ı(k⃗·r⃗−ωt)

and similarly for the other fields. The Maxwell equations simplify to

ı⃗k · D⃗ = 0

ı⃗k · B⃗ = 0

ı⃗k × E⃗ = ıωB⃗

ı⃗k × H⃗ = −ıωD⃗ + J⃗

Now we write everything in terms of E and H fields:

k⃗ · E⃗ = 0

k⃗ · H⃗ = 0

ı⃗k × E⃗ = ıωµrµ0H⃗

ı⃗k × H⃗ = −ıωϵrϵ0E⃗ + σE⃗

We now eliminate the H field

k⃗ × (k⃗ × E⃗) = ωµrµ0k⃗ × H⃗ = −ω2ϵrϵ0µrµ0E⃗ − ıωµrµ0σE⃗

but we also have

k⃗ × (k⃗ × E⃗) = (k⃗ · E⃗)k⃗ − k2E⃗

and because k⃗ · E⃗ = 0 this gives

−k2E⃗ = −ω2ϵrϵ0µrµ0E⃗ − ıωµrµ0σE⃗

This gives us the relation we need

k2 = ω2ϵrµrϵ0µ0(1 +
ıσ

ϵrϵ0ω
)

If the conductivity is large we have approximately

k2 ≈ ω2ϵrµrϵ0µ0(
ıσ

ϵrϵ0ω
)
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k2 ≈ ıωσµrµ0

The speed of light in vacuum is

c2 =
1

ϵ0µ0

and hence we get

k2 ≈ ı
ωσµr

ϵ0c2

or

k ≈ ±
√
ωσµr

ϵ0c2
eı

π
4

If ω is real, k becomes complex, and the plane wave has an exponential part
in space. This means that the intensity of the wave is decreasing when we go
away from the interface. The waves are shielded in the medium.

If k is real, ω is complex, and the plane wave has an exponential part in
time. The wave is decaying everywhere because of Joule heating.

We have three waves, all the same real frequency,

E⃗in(r⃗, t) = E0x̂e
ı(k0z−ωt)

E⃗refl(r⃗, t) = E1x̂e
ı(−k0z−ωt)

E⃗trans(r⃗, t) = E2x̂e
ı(k0−ωt)

The corresponding H fields follow from

k⃗0 × E⃗in = ωµ0H⃗in

k⃗0 × E⃗refl = ωµ0H⃗refl

k⃗ × E⃗trans = ωµrµ0H⃗trans

which gives using the appropriate directions of the k vectors

H⃗in =
k0
ωµ0

E0ŷ

H⃗refl = − k0
ωµ0

E1ŷ

H⃗trans =
k

ωµrµ0
E2ŷ
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and hence we have at the interface for continuity of these parallel compo-
nents:

E0 + E1 = E2

k0
ωµ0

E0 −
k0
ωµ0

E1 =
k

ωµrµ0
E2

or

E0 − E1 =
k

k0µr
E2

which gives

E2 =
2

1 + k
k0µr

E0

Using

k =

√
ωσµr

ϵ0c2
eı

π
4

k0 =
ω

c

this gives

E2 =
2

1 +
√

σ
ϵ0ωµr

eı
π
4

E0

and with large conductivity we have

E2 ≈ 2

√
ϵ0ωµr

σ
e−ıπ4E0

The current density is therefore

J⃗ = σE2x̂ ≈ √
ϵ0ωµrσe

−ıπ4E0

The rate of the Joule heat produced in the medium is the product of J and
E2, which is

PJoule = 2ωϵ0µrE
2
0

and this is a finite number.


