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OSU Physics Department
Comprehensive Examination #116

Thursday, April 4 and Friday, April 5, 2013

Spring 2013 Comprehensive Examination

PART 1, Thursday, April 4, 9:00am

General Instructions

This Spring 2013 Comprehensive Examination consists of eight problems of
equal weight (20 points each). It has four parts. The first part (Problems 1-2) is
handed out at 9:00 am on Thursday, April 4, and lasts three hours. The second
part (Problems 3-4) will be handed out at 1:00 pm on the same day and will
also last three hours. The third and fourth parts will be administered on Friday,
April 5, at 9:00 am and 1:00 pm, respectively. Work carefully, indicate your
reasoning, and display your work clearly. Even if you do not complete a problem,
it might be possible to obtain partial credit—especially if your understanding is
manifest. Use no scratch paper; do all work in the bluebooks, work each problem
in its own numbered bluebook, and be certain that your chosen student letter
(but not your name) is inside the back cover of every booklet. Be sure to make
note of your student letter for use in the remaining parts of the examination.

If something is omitted from the statement of the problem or you feel there
are ambiguities, please get up and ask your question quietly and privately, so
as not to disturb the others. Put all materials, books, and papers on the floor,
except the exam, bluebooks and the collection of formulas and data distributed
with the exam. Calculators are not allowed except when a numerical answer is
required—calculators will then be provided by the person proctoring the exam.
Please return all bluebooks and formula sheets at the end of the exam. Use
the last pages of your bluebooks for “scratch” work, separated by at least one
empty page from your solutions. “Scratch” work will not be graded.
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Problem 1 Monday morning 3

The energy levels of a system are given by En = nε , n = 1, 2, · · · , where ε is a
constant. The degeneracy of the n-th level is gn = nD−1, where D is an integer
with typical values of 1,2,or 3. Calculate the internal energy for this system
for D=1 and D=2. What are the expressions for large temperature values?
Calculate the high temperature limit of the heat capacity in both cases.



Solutions to problem 1 Monday morning 4

The energy levels of a system are given by En = nε , n = 1, 2, · · · , where ε is a
constant. The degeneracy of the n-th level is gn = nD−1, where D is an integer
with typical values of 1,2,or 3. Calculate the internal energy for this system
for D=1 and D=2. What are the expressions for large temperature values?
Calculate the high temperature limit of the heat capacity in both cases.

Solution: .

Z =

∞∑
n=1

nD−1e
−n ε

kBT

Use the abbreviation

FP (x) =

∞∑
n=1

nPxn

and we see that

Z = FD−1(e
− ε
kBT )

We know that

∞∑
n=0

xn =
1

1− x

and hence

F0(x) =
1

1− x
− 1 =

x

1− x
Also,

d

dx
FP (x) =

∞∑
n=1

nPnxn−1 =
1

x
FP+1(x)

which gives us

F1(x) = x
d

dx
F0(x) = x

(
1

1− x
+

x

(1− x)2

)
=

x

1− x
+

x2

(1− x)2
=

x

(1− x)2

F2(x) = x
d

dx
F1(x) = x

(
1

(1− x)2
+ 2

x

(1− x)3

)
=

x+ x2

(1− x)3

The Helmholtz free energy follows from

F (T ) = −kBT ln(Z) = −kBT ln(FD−1(e
− ε
kBT ))

The entropy is given by



Solutions to problem 1 Monday morning 5

S = −
(
∂F

∂T

)
= −F (T )

T
+ kBT

1

FD−1(e
− ε
kBT )

F ′D−1(e
− ε
kBT )e

− ε
kBT

ε

kBT 2

We have U = F + TS and hence

U(T ) = ε
1

FD−1(e
− ε
kBT )

F ′D−1(e
− ε
kBT )e

− ε
kBT = ε

FD(e
− ε
kBT )

FD−1(e
− ε
kBT )

This gives for D = 1:

F1(e
− ε
kBT )

F0(e
− ε
kBT )

=
1

1− e−
ε

kBT

U(T ) = ε
1

1− e−
ε

kBT

The high temperature limit is

U(T ) ≈ ε 1

1− [1− ε
kBT

]
= kBT

This gives for D = 2:

F2(e
− ε
kBT )

F1(e
− ε
kBT )

=
1 + e

− ε
kBT

1− e−
ε

kBT

U(T ) = ε
1 + e

− ε
kBT

1− e−
ε

kBT

The high temperature limit is

U(T ) ≈ ε 2

1− [1− ε
kBT

]
= 2kBT

The heat capacities are now easy. We have for D = 1 C = kB and for D = 2
we have C = 2kB .



Problem 2 Monday morning 6

Consider the following one-dimensional arrangement of masses and springs.
There are four masses attached by three identical springs. The inner two masses
are identical, as are the outer pair of masses.

Solve for the normal modes and their frequencies. Please sketch the normal
modes. You only need consider motion in one dimension (the horizontal one),
and when specifying the normal modes you need only provide the relative am-
plitude of motion for each coordinate.
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Consider the following one-dimensional arrangement of masses and springs.
There are four masses attached by three identical springs. The inner two masses
are identical, as are the outer pair of masses.

Solve for the normal modes and their frequencies. Please sketch the normal
modes. You only need consider motion in one dimension (the horizontal one),
and when specifying the normal modes you need only provide the relative am-
plitude of motion for each coordinate.

Solution: .
Because the system itself is symmetric, we know that we will see only symmet-
ric and antisymmetric solutions (even and odd1). Moreover, we can see that
there will be three normal modes, since there are four degrees of freedom (the
x position of each mass) and there is one translational motion. Using the sym-
metry of the system, we can see that there should be one odd mode (the overall
translational is also odd) and two even modes, which I sketch below, and label
(a), (b) and (c). In each case the two identical masses either have the same
displacement or opposite displacement, so there are only two variables needed
to describe each mode.

1 23 4

Mode (a) We will begin with mode (a), which is the odd mode. In this mode,
the middle spring never exerts a force, since the two M1 masses have identical

1In the case of phonon modes, odd and even can be confusing. In this solution I define
as even the mode that preserves the symmetry of the system, while the odd mode is the one
that breaks it. If you disagree with this designation, that is all right.
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motion. Therefore, the center of mass of each of the two side pairs must be
fixed, which tells us that

M1x1 = −M2x2 (1)

x1 = −M2

M1
x2 (2)

Thus we already know the eigenvector using conservation of momentum. We
should still check, which we can do by writing down the two equations of motion,
which we can do while solving for the frequency.

M1ẍ1 = −k(x1 − x2) (3)

= −M1ω
2x1 (4)

ω2x1 =
k

M1
(x1 − x2) (5)

M2ẍ2 = −k(x2 − x1) (6)

= −M2ω
2x2 (7)

ω2x2 = − k

M2
(x1 − x2) (8)

= −M1

M2
ω2x1 We did have the right eigenvector... (9)

ω2x2 = − k

M2

(
−M2

M1
x2 − x2

)
(10)

= k

(
1

M1
+

1

M2

)
x2 (11)

So our final result for normal mode (a) is:

ω(a) =

√
k

(
1

M1
+

1

M2

)
x
(a)
1 = 1 x

(a)
2 = −M1

M2
x
(a)
3 = −M1

M2
x
(a)
4 = 1

(12)
I should note here that I am numbering the masses as labelled above so 1 and
4 are of mass M1 while 2 and 3 are of mass M2.

Mode (b) and (c) We have to treat modes (b) and (c) together, since they
have the same symmetry. As before, we will begin by writing down the equations
of motion, making use of the symmetry. In this case, the force due to the middle
spring is non-zero.

M2ẍ2 = −k(x2 − x1) (13)

= −M2ω
2x2 (14)

M1ẍ1 = −k(x1 − x2)− k(2x1) (15)

= −M1ω
2x1 (16)
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At this point we have a bonna fide 2× 2 eigenvalue problem to solve. There are
more approaches to solve this than I can shake a stick at. I began by writing
the problem in matrix form.(

3 k
M1

− k
M1

− k
M2

k
M2

)(
x1
x2

)
= ω2

(
x1
x2

)
(17)(

3M2 −M2

−M1 M1

)(
x1
x2

)
=
ω2M1M2

k

(
x1
x2

)
(18)(

3M2 −M2

−M1 M1

)(
x1
x2

)
= λ

(
x1
x2

)
(19)

In the last line I defined a convenient eigenvalue the incorporates some of the
constants. So now we’ve written things as a matrix equation, it’s easy to solve
the characteristic equation.∣∣∣∣3M2 − λ −M2

−M1 M1 − λ

∣∣∣∣ = 0 (20)

0 = (3M2 − λ)(M1 − λ)−M1M2 (21)

= λ2 − (3M2 +M1)λ+ 2M1M2 (22)

λ =
3M2 +M1 ±

√
(3M2 +M1)2 − 8M1M2

2
(23)

ω2 =
k

2M1M2

(
3M2 +M1 ±

√
(3M2 +M1)2 − 8M1M2

)
(24)

This gives us eigenvalues, but we still don’t have the eigenvectors. For that we’ll
want to go back to our eigenvalue equations:(

3M2 −M2

−M1 M1

)(
x1
x2

)
= λ

(
x1
x2

)
(25)

−M1x1 +M1x2 = λx2 (26)

x1 =

(
1− λ

M1

)
x2 (27)

=

(
1−

3M2 +M1 ±
√

(3M2 +M1)2 − 8M1M2

2M1

)
x2

(28)

=

(
1

2
−

3M2 ±
√

(3M2 +M1)2 − 8M1M2

2M1

)
x2 (29)
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So this is it. Putting (b) and (c) together, we have:

ω(b,c) =

√
k

2M1M2

(
3M2 +M1 ±

√
(3M2 +M1)2 − 8M1M2

)
(30)

or equivalently

ω(b,c) =

√√√√k

2

(
3

M1
+

1

M2
±

√
9

M2
1

+
1

M2
2

− 2

M1M2

)
(31)

x
(b,c)
1 =

(
1

2
−

3M2 ±
√

(3M2 +M1)2 − 8M1M2

2M1

)
(32)

x
(b,c)
2 = 1 (33)

x
(b,c)
3 = −1 (34)

x
(b,c)
4 = −

(
1

2
−

3M2 ±
√

(3M2 +M1)2 − 8M1M2

2M1

)
(35)

So there you have it, frequencies and non-normalized eigenvectors.
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A simple Hilbert space is defined by an orthonormal basis {|1〉, |2〉, |3〉}. The
vectors (kets) |Φ1〉 and |Φ2〉 are defined in terms of this basis

|Φ1〉 = N1

(
|1〉+

1

2
|2〉 − i|3〉

)
and |Φ2〉 = N2

(
1√
2
|1〉+

i√
2
|3〉
)
.

(a) Normalize |Φ1〉 and |Φ2〉. Determine a vector |Φ3〉 such that {|Φ1〉, |Φ2〉, |Φ3〉}
form an orthonormal basis.

(b) Find a matrix representation in the basis {|1〉, |2〉, |3〉} of the projection
operators that project onto the vectors |Φ1〉, |Φ2〉, and |Φ3〉. Verify that
these matrices are Hermitian and satisfy the completeness relation.

(c) The Hamiltonian of a system in this Hilbert space is given by

Ĥ =

 −E0 0 0
0 0 0
0 0 E0


in a matrix representation with respect to the basis {|1〉, |2〉, |3〉}. Deter-
mine the time evolution of the vectors |Φi〉 in this system. What energies
do you measure for vector |Φ1(t)〉, and with what probabilities?
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A coaxial cable consists of a solid, cylindrical inner conductor with radius r1, and a hollow cylindrical 
outer conductor with inside radius of r2. Both cylinders share the same axis.  

Part 1: Capacitance per unit length of a coaxial cable 

Assume there is a static charge per unit length, λ, on the inner conductor and an equal and opposite 

charge per unit length -λ on the outer conductor. Calculate the voltage difference between the inner and 
outer conductors, and hence find the capacitance per unit length, C0.  

Part 2: Inductance per unit length of a coaxial cable 

 

Assume there is a steady current, I, flowing in the inner and outer conductors, as shown above. Calculate 
the magnetic field generated by this current, and hence the inductance per unit length, L0. Note that 
inductance is related to the energy stored in the magnetic field, U = ½ L I2. 

Part 3: Voltage disturbance in a coaxial cable 

 
An infinitely long coaxial cable is initialized with zero voltage difference between the inner and outer 
conductors. Then at t = 0 a local voltage disturbance is introduced (non-zero voltage in a short segment of 
the cable). The time evolution of the disturbance is given by 

2

2

002

2 ),(),(
t
txVCL

x
txV

∂
∂

=
∂

∂
 

• Use the differential equation to find the speed that this voltage disturbance will move along the 
cable. Your “proof” should include traveling wave solutions to the differential equation. 

• Express the propagation speed in terms of r1, r2 and fundamental constants.  

• Simplify your expression for propagation speed so that it includes as few variables as possible. 
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Problem 5 Tuesday morning 19

Consider a particle (mass m) in a one-dimensional potential well

V0(x) =

{
0 |x| ≤ a

∞ |x| > a .

Determine the energy of the ground state (lowest energy eigenstate) for the
potential V (x) = V0(x) + U(x) in lowest non-vanishing order of perturbation
theory for the following perturbation potentials:

(a) U(x) = U0 cos(πx/a),

(b) U(x) = U0δ(x− b), with −a < b < a,

(c) U(x) = U0x.

Hint:

∞∑
n=1

n2

(4n2 − 1)5
=

15π2 − π4

3 · 163
.
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Problem 6 Tuesday morning 24

The Helmholtz free energy of an ideal gas is given by

Fid(T, V,N) = NRT

(
ln(

n

nQ(T )
)− 1

)
where n = N

V and nQ(T ) has the dimensions of density and is proportional to

T
3
2 . R is the molar gas constant.

(a) Suppose we have a gas with an equation of state given by

pV

NRT
= 1 +B2(T )

N

V

Calculate the difference ∆F in Helmholtz free energy between this gas
and the ideal gas by analyzing the work done in an isothermal process.

(b) The coefficient of thermal expansion is given by

α =
1

V

(
∂V

∂T

)
p,N

Calculate the coefficient of thermal expansion for the ideal gas and for our
gas with the equation of state above.

(c) Suppose that in a certain range of values for the state variables we find that
∆F ∝ T 2. What can you say about the coefficient of thermal expansion
of our gas compared to the ideal gas?
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The Helmholtz free energy of an ideal gas is given by

Fid(T, V,N) = NRT

(
ln(

n

nQ(T )
)− 1

)
where n = N

V and nQ(T ) has the dimensions of density and is proportional to

T
3
2 . R is the molar gas constant.

(a) Suppose we have a gas with an equation of state given by

pV

NRT
= 1 +B2(T )

N

V

Calculate the difference ∆F in Helmholtz free energy between this gas
and the ideal gas by analyzing the work done in an isothermal process.

Solution: .
The first law tells us that

dF = −SdT − pdV + µdN

and hence at constant temperature

F (T, V2, N)− F (T, V1, N) = −
∫ 2

1

pdV = −
∫ 2

1

NRT

V
(1 +B2(T )

N

V
)dV

For the ideal gas we have

Fid(T, V2, N)− Fid(T, V1, N) = −
∫ 2

1

NRT

V
dV

The difference ∆F in Helmholtz free energy then follows from

∆F (T, V2, N)−∆F (T, V1, N) = −B2(T )

∫ 2

1

N2RT

V 2
dV = B2(T )N2RT

(
1

V2
− 1

V1

)
We also see that for very large values of the volume our gas behaves like
an ideal gas. So we take the limit V1 →∞ and in this limit the difference
in Helmholtz free energy is zero. Hence

∆F (T, V,N) = B2(T )N2RT
1

V
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(b) The coefficient of thermal expansion is given by

α =
1

V

(
∂V

∂T

)
p,N

Calculate the coefficient of thermal expansion for the ideal gas and for our
gas with the equation of state above.

Solution: .
From the equation of state we see, with N constant,

dp =
NR

V

(
1 +B2(T )

N

V

)
dT+

NRT

V
B′2(T )

N

V
dT+

(
−NRT

V 2
− 2B2(T )

N2RT

V 3

)
dV

with p constant we find

NR

V

(
1 +B2(T )

N

V

)
dT+

NRT

V
B′2(T )

N

V
dT =

(
NRT

V 2
+ 2B2(T )

N2RT

V 3

)
dV

and hence

α =
1

V

NR
V

(
1 +B2(T )NV

)
+ NRT

V B′2(T )NV
NRT
V 2 + 2B2(T )N

2RT
V 3

Using the density n = N
V we can simplify this somewhat

α =
1

T

1 +B2(T )n+ nTB′2(T )

1 + 2B2(T )n

The result for the ideal gas follows by setting B2 identical to zero, which
leaves 1

T .

(c) Suppose that in a certain range of values for the state variables we find that
∆F ∝ T 2. What can you say about the coefficient of thermal expansion
of our gas compared to the ideal gas?

Solution: .
If we have ∆F ∝ T 2 we see that in that case

B2(T ) = cT

and we have
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B′2(T ) = c

Hence

α =
1

T

1 + cTn+ nTc

1 + 2cTn
=

1

T

Hence in that particular case there is no change in the thermal expansion
coefficient!



In the absence of additional electric fields, the electric field inside a sphere of uniform polarization P is  
 

PE
03
1
ε

−=  

 
a) Use the above relationship to calculate the polarization of a dielectric sphere that is placed in a 

uniform external electric field, Eext. Assume that the dielectric sphere is made of a linear polarizable 

material with electric susceptibility χ < 1.  
 
b) When the dielectric sphere is resting at ground level (z = 0), it can be lifted against the force of 

gravity by applying a non-zero Eext(z = 0) and non-zero dE/dz|z=0. Assuming that E always points in 

the z-direction (vertical direction), find the condition for levitation in terms of E, dE/dz, χ, the 

acceleration due to gravity, g, and the mass density of the sphere, ρ. 
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Consider the following pendulum. It consists of a rigid pendulum that is rigidly
attached to a wheel that rolls without slipping. You may neglect the mass of
everything but the mass at the end of the pendulum.

Rolls without slipping

(a) Find the equation of motion for this system.

(b) Solve for the period of oscillation, as a function of the amplitude. Your
solution may contain an integral.
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Consider the following pendulum. It consists of a rigid pendulum that is rigidly
attached to a wheel that rolls without slipping. You may neglect the mass of
everything but the mass at the end of the pendulum.

Rolls without slipping

(a) Find the equation of motion for this system.

Solution: .
We will begin by constructing a Lagrangian for this system. In doing
so, we will use three coordinates: x and y will be the coordinates of the
mass, expressed in a reference frame in which the center of the wheel
is (0, 0) when θ = 0, where θ (the third coordinate) is the angle of the
pendulum from the vertical. Obviously, only one of these three coordinates
is independent. To begin with y:

y = −L cos θ (36)

For x, we need to account first for the location of the wheel center, which
is at −Rθ, and secondly for the location of the mass relative to the wheel
center, which gives:

x = −Rθ + L sin θ (37)

From these, we can find the potential energy

V = Mgy (38)

= −MgL cos θ (39)
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and the kinetic energy

T =
1

2
M(ẋ2 + ẏ2) (40)

=
1

2
M
(
(−Rθ̇ + L cos θθ̇)2 + L2 sin2 θθ̇2

)
(41)

=
1

2
M
(
R2 + L2 − 2RL cos θ

)
θ̇2 (42)

Finally, we put these together to obtain our Lagrangian:

L = T − V (43)

=
1

2
M
(
R2 + L2 − 2RL cos θ

)
θ̇2 +MgL cos θ (44)

and we use the Euler-Lagrange equation:

d

dt

∂L
∂θ̇

=
∂L
∂θ

(45)

d

dt

(
M
(
R2 + L2 − 2RL cos θ

)
θ̇
)

= MRL sin θθ̇2 −MgL sin θ (46)

d

dt

((
R2 + L2 − 2RL cos θ

)
θ̇
)

=
(
RLθ̇2 − gL

)
sin θ (47)(

R2 + L2 − 2RL cos θ
)
θ̈ + 2RL sin θθ̇2 =

(
RLθ̇2 − gL

)
sin θ (48)(

R2 + L2 − 2RL cos θ
)
θ̈ = −

(
RLθ̇2 + gL

)
sin θ (49)

And there we have it, the equation of motion for our pendulum thing.

(b) Solve for the period of oscillation, as a function of the amplitude. Your
solution may contain an integral.

Solution: .
The easy way to solve this involves using a first integral of the motion
(which is to say, energy conservation). The total energy is:

E = T + V (50)

=
1

2
M
(
R2 + L2 − 2RL cos θ

)
θ̇2 −MgL cos θ (51)

= constant (52)
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Because this is constant, we can solve for θ̇ as a function of θ.

E =
1

2
M
(
R2 + L2 − 2RL cos θ

)
θ̇2 −MgL cos θ (53)

θ̇2 =
E +MgL cos θ

1
2M

(
R2 + L2 − 2RL cos θ

) (54)

θ̇ =

√
E +MgL cos θ

1
2M

(
R2 + L2 − 2RL cos θ

) (55)

=
√

2gL

√
cos θ − cos θ0

R2 + L2 − 2RL cos θ
(56)

=

√
2gL

R2 + L2

√
cos θ − cos θ0

1− 2RL
R2+L2 cos θ

(57)

where I have defined θ0 as the maximum value of θ, which corresponds to
the point where the energy is all potential. Now that we have θ̇(θ), we
just need to integrate its inverse to find the period. It’s easiest to just
integrate over a quarter period:

τ = 4

∫ θ0

0

dt

dθ
dθ (58)

= 4

∫ θ0

0

dθ

θ̇
(59)

(60)

= 4

√
R2 + L2

2gL

∫ θ0

0

√
1− 2RL

R2+L2 cos θ

cos θ − cos θ0
dθ (61)

And here is where we stop. You can see that the integral simplifies if
R = 0, although not enough for you to be excited about solving it. If
you also assume |θ0| � 0 then it simplifies further and you get the simple
harmonic oscillator solution.


