OSU PHYSICS DEPARTMENT
COMPREHENSIVE EXAMINATION #116

Thursday, April 4 and Friday, April 5, 2013
Spring 2013 Comprehensive Examination
PART 1, Thursday, April 4, 9:00am

General Instructions

This Spring 2013 Comprehensive Examination consists of eight problems of
equal weight (20 points each). It has four parts. The first part (Problems 1-2) is
handed out at 9:00 am on Thursday, April 4, and lasts three hours. The second
part (Problems 3-4) will be handed out at 1:00 pm on the same day and will
also last three hours. The third and fourth parts will be administered on Friday,
April 5, at 9:00 am and 1:00 pm, respectively. Work carefully, indicate your
reasoning, and display your work clearly. Even if you do not complete a problem,
it might be possible to obtain partial credit—especially if your understanding is
manifest. Use no scratch paper; do all work in the bluebooks, work each problem
in its own numbered bluebook, and be certain that your chosen student letter
(but not your name) is inside the back cover of every booklet. Be sure to make
note of your student letter for use in the remaining parts of the examination.

If something is omitted from the statement of the problem or you feel there
are ambiguities, please get up and ask your question quietly and privately, so
as not to disturb the others. Put all materials, books, and papers on the floor,
except the exam, bluebooks and the collection of formulas and data distributed
with the exam. Calculators are not allowed except when a numerical answer is
required—calculators will then be provided by the person proctoring the exam.
Please return all bluebooks and formula sheets at the end of the exam. Use
the last pages of your bluebooks for “scratch” work, separated by at least one
empty page from your solutions. “Scratch” work will not be graded.






Problem 1 Monday morning 3

The energy levels of a system are given by E, =ne, n=1,2,--- , where e is a
constant. The degeneracy of the n-th level is g, = n”~!, where D is an integer
with typical values of 1,2,or 3. Calculate the internal energy for this system
for D=1 and D=2. What are the expressions for large temperature values?
Calculate the high temperature limit of the heat capacity in both cases.
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The energy levels of a system are given by E, =ne, n=1,2,--- , where e is a
constant. The degeneracy of the n-th level is g, = n”~!, where D is an integer
with typical values of 1,2,or 3. Calculate the internal energy for this system
for D=1 and D=2. What are the expressions for large temperature values?
Calculate the high temperature limit of the heat capacity in both cases.

Solution:

)
Z= nPle " FaT
Use the abbreviation
0o
Fp(z) = Z nz"
n=1
and we see that

Z =Fp_y(e F5T)
‘We know that

> 1
n __
Z T = 1—z
n=0
and hence
1 T
F = —1=
0(@) 1—2x 1—2x
Also,

d 1 x x z? z
Fi(x) —x%Fo(l“) =z (1_x (1_35)2) i 1-2)2 (1-a)?
d 1 T $+.’E2
FQ@):%Fl(x):x((l—x)z”(1—9:)3) L

The Helmholtz free energy follows from

F(T) = —kpTIn(Z2) = —kpTIn(Fp_ (e F5T))
The entropy is given by
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8F F(T) 1 —__€_ __€_ €
S = — _— = — k T - F/ kpT kpT
<8T) T + ks FD,1(€7 kBT) Dil(e . )6 v kBTQ

We have U = F + TS and hence
1
Fp_i(e”757)

This gives for D = 1:

. Fp(e F5T)

UT)=¢ Fp_ (e_’“BLT)e_’“BT = -
D—-1 Fp1(c %7)

Fl(e_kBT) o 1
FO(G_ICB;T) 176_16[3%
1
UT)=¢ —
1—e¢ FBT

The high temperature limit is

U(T) ~ ToE kpT

This gives for D = 2:

Fg(e_’“E%T) 1+ ¢ FBT

Fi(e ®8T) 1—¢ %aT

14 e FpT
U(T) = GL,;

1—e *57
The high temperature limit is

2

- kgT

The heat capacities are now easy. We have for D =1 C = kg and for D = 2
we have C' = 2kpg.
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Consider the following one-dimensional arrangement of masses and springs.
There are four masses attached by three identical springs. The inner two masses
are identical, as are the outer pair of masses.

k, L k, L kL

Mo M, M, Mo

Solve for the normal modes and their frequencies. Please sketch the normal
modes. You only need consider motion in one dimension (the horizontal one),
and when specifying the normal modes you need only provide the relative am-
plitude of motion for each coordinate.
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Consider the following one-dimensional arrangement of masses and springs.
There are four masses attached by three identical springs. The inner two masses
are identical, as are the outer pair of masses.

k, L k, L k, L

Mo M, M, Mo

Solve for the normal modes and their frequencies. Please sketch the normal
modes. You only need consider motion in one dimension (the horizontal one),
and when specifying the normal modes you need only provide the relative am-
plitude of motion for each coordinate.

Solution:

Because the system itself is symmetric, we know that we will see only symmet-
ric and antisymmetric solutions (even and odd!). Moreover, we can see that
there will be three normal modes, since there are four degrees of freedom (the
x position of each mass) and there is one translational motion. Using the sym-
metry of the system, we can see that there should be one odd mode (the overall
translational is also odd) and two even modes, which I sketch below, and label
(a), (b) and (c). In each case the two identical masses either have the same
displacement or opposite displacement, so there are only two variables needed
to describe each mode.

k, L k,L : k, L
M, M, M, Ms
®
(a) (odd) @ - @ @
(b) (even)™— ~— — —
(c) (even) ——  ~— — -

Mode (a) We will begin with mode (a), which is the odd mode. In this mode,
the middle spring never exerts a force, since the two M; masses have identical

n the case of phonon modes, odd and even can be confusing. In this solution I define
as even the mode that preserves the symmetry of the system, while the odd mode is the one
that breaks it. If you disagree with this designation, that is all right.
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motion. Therefore, the center of mass of each of the two side pairs must be
fixed, which tells us that

Ml.’El = —MQ.’EQ (1)
M
xr1 = —Mjiﬁz (2)

Thus we already know the eigenvector using conservation of momentum. We
should still check, which we can do by writing down the two equations of motion,
which we can do while solving for the frequency.

lel:'l = —k(xl — .’EQ) (3)
= —M1w2x1 (4)
k
w2x1 = E(aﬂ — 1'2) (5)
Mgii'g = —k($2 — .’El) (6)
= —Myw?z, (7)
w2x2 = _E(xl — .’EQ) (8)
Ml 2 . . .
=LY We did have the right eigenvector... 9)
2
k M.
CL)Q:L*Z = —E (]wjl'z - ZL'Q) (10)
1 1
=k| —F— + — 11
k(M1 - Mg)x2 a
So our final result for normal mode (a) is
Lo 1Y ],@ @ _ M| @_ M @
Wy =Alk|—+— |27 ' =1|lzy  =——F |23 ' =——F |2, =1
(a) <M1 Mg) 1 2 M, 3 M, 4

(12)

I should note here that I am numbering the masses as labelled above so 1 and
4 are of mass M7 while 2 and 3 are of mass Ms.

Mode (b) and (c) We have to treat modes (b) and (c) together, since they
have the same symmetry. As before, we will begin by writing down the equations
of motion, making use of the symmetry. In this case, the force due to the middle
spring is non-zero.

Moiy = —k(xe — 1) (13)
= —Myw?zy (14)
M@y = —k(z1 — x2) — k(221) (15)
= —Mw’s, (16)
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At this point we have a bonna fide 2 x 2 eigenvalue problem to solve. There are
more approaches to solve this than I can shake a stick at. I began by writing
the problem in matrix form.

3w -1 T 2 (T

) (M) = a7
i i X2 T2
3M2 —M2 T _ w2M1M2 X1 (18)
-M; M T2 k T2

(5 ) ()= () a9

In the last line I defined a convenient eigenvalue the incorporates some of the
constants. So now we’ve written things as a matrix equation, it’s easy to solve
the characteristic equation.

3My — A —My |
‘ My M- T (20)
0= (3Mz— N (M — A) — M1 M (21)
= A% — (3My + M)\ + 2M; My (22)

3Ms + My £ \/(3Ma + M;)2 — 8M; My
A= 5 (23)
k
W = T (3M2 My £/ BMy + M) — 8M1M2>

(24)

This gives us eigenvalues, but we still don’t have the eigenvectors. For that we’ll
want to go back to our eigenvalue equations:

(5 ) )= () )

—Mix1 + Mixo = Axo (26)
A
3Ms + My £ \/(3M + M;)2 — 8M1 M>
= 1-— )
2M,
(28)

(1 3My+ \/(3My + My)? — 8M, My (20)
—\2 oM, 2
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So this is it. Putting (b) and (c¢) together, we have:

k
W(b,c) = \/2‘2\4_1‘]\4_2 (3M2 + M1 + \/(3M2 + M1)2 — 8M1M2>

or equivalently

E(3 1 9 1 2
w =ilzl =+ —5 t 73 —
(b:€) 2 \ My " M, M2 M2 MM,

L0 _ (1  3My £ \/(3My + M) — 8M1M2>
(be) _

2 oM,
x(2b,(:) -1
xéb’c) 1

(be) - 1 - 3M2 £ \/(3M2 + ]\4'1)2 — 8M1M2
N oM,

So there you have it, frequencies and non-normalized eigenvectors.

10

(30)
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A simple Hilbert space is defined by an orthonormal basis {|1),|2),|3)}. The
vectors (kets) |®1) and |®3) are defined in terms of this basis

@) = N, (|1> + %|2> _ i|3>> and  |y) = N, (\}iu) + \}5|3>) .

(a)

(b)

Normalize |®1) and |®5). Determine a vector |®3) such that {|®1), |P2), |P3)}
form an orthonormal basis.

Find a matrix representation in the basis {|1),|2),]3)} of the projection
operators that project onto the vectors |®1), |®3), and |®3). Verify that
these matrices are Hermitian and satisfy the completeness relation.

The Hamiltonian of a system in this Hilbert space is given by

) ~Ey 0 0
A= o o0 o
0 0 E

in a matrix representation with respect to the basis {|1),]2), |3)}. Deter-
mine the time evolution of the vectors |®;) in this system. What energies
do you measure for vector |®;(t)), and with what probabilities?
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A coaxial cable consists of a solid, cylindrical inner conductor with radius 7, and a hollow cylindrical
outer conductor with inside radius of r,. Both cylinders share the same axis.

Part 1: Capacitance per unit length of a coaxial cable

Assume there is a static charge per unit length, A, on the inner conductor and an equal and opposite
charge per unit length -A on the outer conductor. Calculate the voltage difference between the inner and
outer conductors, and hence find the capacitance per unit length, C,.

Part 2: Inductance per unit length of a coaxial cable

Assume there is a steady current, /, flowing in the inner and outer conductors, as shown above. Calculate
the magnetic field generated by this current, and hence the inductance per unit length, L. Note that
inductance is related to the energy stored in the magnetic field, U= Y% L I.

Part 3: Voltage disturbance in a coaxial cable

An infinitely long coaxial cable is initialized with zero voltage difference between the inner and outer
conductors. Then at ¢t = 0 a local voltage disturbance is introduced (non-zero voltage in a short segment of
the cable). The time evolution of the disturbance is given by

oMV (x,1) oM (x,1)
bl — L C b
o’ 0

e Use the differential equation to find the speed that this voltage disturbance will move along the
cable. Your “proof” should include traveling wave solutions to the differential equation.

e  Express the propagation speed in terms of 7, r, and fundamental constants.

e Simplify your expression for propagation speed so that it includes as few variables as possible.
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Consider a particle (mass m) in a one-dimensional potential well

0 |z|<a
V()(x) = {

oo |zl >a.

Determine the energy of the ground state (lowest energy eigenstate) for the
potential V(z) = Vp(z) + U(x) in lowest non-vanishing order of perturbation
theory for the following perturbation potentials:

(a) U(x) = Uy cos(mx/a),
(b) U(x) = Upd(xz —b), with —a < b < q,
(¢) U(x) = Upz.
. = n? 1572 — 74
D D e VIR TS T
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The Helmholtz free energy of an ideal gas is given by

F(T,V,N) = NRT <1n(nQ"(T)) - 1)

where n = % and ng(7T') has the dimensions of density and is proportional to
T%. R is the molar gas constant.

(a) Suppose we have a gas with an equation of state given by

pV N

Calculate the difference AF in Helmholtz free energy between this gas
and the ideal gas by analyzing the work done in an isothermal process.

(b) The coefficient of thermal expansion is given by

am (W>
VAT ), n

Calculate the coefficient of thermal expansion for the ideal gas and for our
gas with the equation of state above.

(¢) Suppose that in a certain range of values for the state variables we find that
AF o« T?. What can you say about the coefficient of thermal expansion
of our gas compared to the ideal gas?
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The Helmholtz free energy of an ideal gas is given by

F(T,V,N) = NRT <1n(nQ"(T)) - 1>

where n = % and ng(7T') has the dimensions of density and is proportional to
T%. R is the molar gas constant.

(a) Suppose we have a gas with an equation of state given by

1% N
L 14 By

Calculate the difference AF in Helmholtz free energy between this gas
and the ideal gas by analyzing the work done in an isothermal process.

Solution:
The first law tells us that

dF = —SdT — pdV + udN

and hence at constant temperature

2 2 NRT N
F(TVa,N) = PV N) == [ pav == [F 2 (s Bun) J)av
1 1

For the ideal gas we have

2
NRT
FialT, Vo, N) = Fua(T, Vi, Ny = — [ 25y
1

The difference AF' in Helmholtz free energy then follows from

2 N2RT 1
AF(T,Vy, N)=AF(T,Vi,N) = —BQ(T)/ T}jdv = By(T)N?RT (
1

We also see that for very large values of the volume our gas behaves like
an ideal gas. So we take the limit V; — oo and in this limit the difference
in Helmholtz free energy is zero. Hence

AF(T,V,N) = By (T)N2RT%

1

Vo Wi

)
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(b) The coefficient of thermal expansion is given by

e (W>
VAT ), §

Calculate the coefficient of thermal expansion for the ideal gas and for our
gas with the equation of state above.

Solution:
From the equation of state we see, with N constant,

dp = ¥ <1 + BQ(T)]J) dT+EB§(T)§dT+ <— N;;T 2B5(T) N‘Q/IET
with p constant we find
¥ (1 + BQ(T)]‘\Q dT—i—gBé(T)ng _ (Z\g 4 2Bg(T)N‘2/I§T> v
and hence
o L RE (14 Bo(T)5) + M BY(T) 4
% NET § 9By (T) N;"/IS%T

Using the density n = % we can simplify this somewhat

11+ By(T)n+nTBy(T)
T 1+2By(Tn

The result for the ideal gas follows by setting Bs identical to zero, which

1
leaves 7.

(¢) Suppose that in a certain range of values for the state variables we find that

AF o« T?. What can you say about the coefficient of thermal expansion
of our gas compared to the ideal gas?

Solution:
If we have AF o T? we see that in that case

By(T) = T

and we have
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BY(T)=c
Hence

_ll—l—cTn—&—nTc 1

T 14+2In T

Hence in that particular case there is no change in the thermal expansion
coefficient!
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In the absence of additional electric fields, the electric field inside a sphere of uniform polarization P is

E:—LP
3g,

a) Use the above relationship to calculate the polarization of a dielectric sphere that is placed in a
uniform external electric field, E.y. Assume that the dielectric sphere is made of a linear polarizable
material with electric susceptibility y < 1.

b) When the dielectric sphere is resting at ground level (z = 0), it can be lifted against the force of
gravity by applying a non-zero E.(z = 0) and non-zero dE/dz|,—o. Assuming that E always points in
the z-direction (vertical direction), find the condition for levitation in terms of E, dE/dz, y, the
acceleration due to gravity, g, and the mass density of the sphere, p.
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Consider the following pendulum. It consists of a rigid pendulum that is rigidly
attached to a wheel that rolls without slipping. You may neglect the mass of
everything but the mass at the end of the pendulum.

R Rolls without slipping

M

(a) Find the equation of motion for this system.

(b) Solve for the period of oscillation, as a function of the amplitude. Your
solution may contain an integral.
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Consider the following pendulum. It consists of a rigid pendulum that is rigidly
attached to a wheel that rolls without slipping. You may neglect the mass of
everything but the mass at the end of the pendulum.

R Rolls without slipping

M

(a) Find the equation of motion for this system.

Solution:

We will begin by constructing a Lagrangian for this system. In doing
so, we will use three coordinates: = and y will be the coordinates of the
mass, expressed in a reference frame in which the center of the wheel
is (0,0) when 6 = 0, where € (the third coordinate) is the angle of the
pendulum from the vertical. Obviously, only one of these three coordinates
is independent. To begin with y:

y=—LcosH (36)

For z, we need to account first for the location of the wheel center, which
is at —R6, and secondly for the location of the mass relative to the wheel
center, which gives:

z=—RO+ Lsind (37)
From these, we can find the potential energy

V =Mgy (38)
= —MgLcosf (39)
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and the kinetic energy

1
T = SM(i? + ) (40)
= %M((—R9+Lcosﬁé)2 + L?sin® 06?) (41)
- %]\J(R2 + L2 —2RLC0S9)92 (42)

Finally, we put these together to obtain our Lagrangian:
L=T-V (43)

= %M(R2 + L?> —2RL cos 9)92 + MgLcosf (44)

and we use the Euler-Lagrange equation:

doL oL
dtop o0 )
%(M(Rz + L2~ 2RLcos0)0) = MRLsin00* — MgLsinf (46)
%((32 + L? — 2RLcos 9)9‘) = (RL6? — gL)sin6 (47)
(R? + L? —2RLcos )6 + 2RLsin00? = (RLO* — gL) sin 6 (48)
(R*+ L* — 2RL cos 9)0 = f(RLG.2 + gL) sin6 (49)

And there we have it, the equation of motion for our pendulum thing.

(b) Solve for the period of oscillation, as a function of the amplitude. Your
solution may contain an integral.

Solution:
The easy way to solve this involves using a first integral of the motion
(which is to say, energy conservation). The total energy is:

E=T+V (50)
1 .
= 5 M(R? + L* = 2RL cos 0)0* — MgLcos 0 (51)

= constant (52)
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Because this is constant, we can solve for 6 as a function of 6.

1 .
E = §M(R2 + L? = 2RLcos0)0* — MgL cos
E + MgLcosf
LM (R?+ L? — 2RL cos6)
E+ MgLcos6
$M(R? + L? — 2RL cos )
cos 6 — cos By
=+/29L
g \/R2+L2 —2RLcosf
2gL cos B — cos b
R2+L2

0% =

cosf

— _2RL
R2 +L2
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(53)

(54)

(55)

(56)

(57)

where I have defined 6y as the maximum value of 6, which corresponds to
the point where the energy is all potential. Now that we have 6(0), we
just need to integrate its inverse to find the period. It’s easiest to just

integrate over a quarter period:
bo at

=4 —db
’ /O do

0o
:4/ 4
o 6

R24 L2 [% R2+L2 cos@
2gL cos  — cos 90

(58)

(59)
(60)

(61)

And here is where we stop. You can see that the integral simplifies if
R = 0, although not enough for you to be excited about solving it. If
you also assume |6p| < 0 then it simplifies further and you get the simple

harmonic oscillator solution.



