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OSU Physics Department
Comprehensive Examination #115

Monday, January 7 and Tuesday, January 8, 2013

Winter 2013 Comprehensive Examination

PART 1, Monday, January 7, 9:00am

General Instructions

This Winter 2013 Comprehensive Examination consists of eight problems of
equal weight (20 points each). It has four parts. The first part (Problems 1-2)
is handed out at 9:00 am on Monday, January 7, and lasts three hours. The
second part (Problems 3-4) will be handed out at 1:00 pm on the same day
and will also last three hours. The third and fourth parts will be administered
on Tuesday, January 8, at 9:00 am and 1:00 pm, respectively. Work carefully,
indicate your reasoning, and display your work clearly. Even if you do not
complete a problem, it might be possible to obtain partial credit—especially
if your understanding is manifest. Use no scratch paper; do all work in the
bluebooks, work each problem in its own numbered bluebook, and be certain
that your chosen student letter (but not your name) is inside the back cover
of every booklet. Be sure to make note of your student letter for use in the
remaining parts of the examination.

If something is omitted from the statement of the problem or you feel there
are ambiguities, please get up and ask your question quietly and privately, so
as not to disturb the others. Put all materials, books, and papers on the floor,
except the exam, bluebooks and the collection of formulas and data distributed
with the exam. Calculators are not allowed except when a numerical answer is
required—calculators will then be provided by the person proctoring the exam.
Please return all bluebooks and formula sheets at the end of the exam. Use
the last pages of your bluebooks for “scratch” work, separated by at least one
empty page from your solutions. “Scratch” work will not be graded.
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Problem 1 Monday morning 3

The Helmholtz free energy of a gas is given by:

F = −NkBT

(
1 + ln

(
(V −Nb)T 3

2

Φ

))
− aN2

V
(1)

(a) How much energy is required to raise the temperature of this system to
twice its initial temperature, while holding the volume fixed?

(b) How much does the entropy of this system increase, if it is isothermally
expanded to twice its initial volume?

(c) What is the value of Cp for this gas? Cp is the heat capacity at fixed
pressure.
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The Helmholtz free energy of a gas is given by:

F = −NkBT

(
1 + ln

(
(V −Nb)T 3

2

Φ

))
− aN2

V
(2)

(a) How much energy is required to raise the temperature of this system to
twice its initial temperature, while holding the volume fixed?

Solution: .
We begin by noting that

F = U − TS (3)

dF = −SdT − pdV (4)

S = −
(
∂F

∂T

)
V

(5)

So now we can solve for the entropy. This will be useful, as it will allow
us to find out what the internal energy is.

S = −
(
∂F

∂T

)
V

(6)

= NkB

(
1 + ln

(
(V −Nb)T 3

2

Φ

)
+

3

2

)
(7)

The energy needed to raise the temperature at fixed volume is just equal
to the change in internal energy, according to the First Law, since the
work is zero when the volume is held fixed. Thus we will call our answer
∆U (and call the initial temperature T ). But before we do this (as it gets
a bit hairy), it’s helpful to first just solve for U .

U = F + TS (8)

= −NkBT

(
1 + ln

(
(V −Nb)T 3

2

Φ

))
− aN2

V
+NkBT

(
1 + ln

(
(V −Nb)T 3

2

Φ

)
+

3

2

)
(9)

=
3

2
NkBT −

aN2

V
(10)

At this point, we should be feeling pretty cozy. If we consider the a →
0 limit, we will find the comfortable ideal gas internal energy, which is
indepenent of volume. Clearly the a term is just an attractive potential
energy.

∆U = U(2T )− U(T ) (11)

=
3

2
NkB2T − aN2

V
− 3

2
NkBT +

aN2

V
(12)

=
3

2
NkBT (13)
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which tells us that this gas (which is just a van der Waals gas) has the
same CV as the ideal gas.

(b) How much does the entropy of this system increase, if it is isothermally
expanded to twice its initial volume?

Solution: .
Given the entropy we already found, this is pretty easy.

∆S = S(2V )− S(V ) (14)

= NkB

(
1 + ln

(
(2V −Nb)T 3

2

Φ

)
+

3

2

)
−NkB

(
1 + ln

(
(V −Nb)T 3

2

Φ

)
+

3

2

)
(15)

= NkB (ln(2V −Nb)− ln(V −Nb)) (16)

= NkB ln

(
2V −Nb
V −Nb

)
(17)

Here we can see that if we set b to zero, we would get the ideal gas solution,
which is NkB ln 2.

(c) What is the value of Cp for this gas? Cp is the heat capacity at fixed
pressure.

Solution: .
The heat capacity at fixed pressure is given by

Cp = T

(
∂S

∂T

)
p

(18)

which would be great if we had S as a function of T and p. But we don’t,
so we need to think a little further. Cp differs from CV because of the work
that is done by a system as it is heated at fixed pressure, which means
you need to add more energy to heat it up (unless its thermal expansion
is negative, in which case it is the other way around).

A nice function when working at fixed pressure is the enthalpy, since it
automatically subtracts out the work that is done on the surroundings.

H = U + pV (19)

dH = TdS + V dp (20)

From its total differential, you can see that the change in enthalpy is equal
to the heat when working at fixed pressure. So we just need to know p,
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and then we can find H from the U that we already computed.

p = −
(
∂F

∂V

)
T

(21)

=
NkBT

V −Nb
− aN2

V 2
(22)

This is a nice and simple formula!

H = U + pV (23)

=
3

2
NkBT +

NkBTV

V −Nb
− 2aN2

V
(24)

=
3

2
NkBT +

NkBT

1− Nb
V

− 2aN2

V
(25)

And now we can find the heat capacity, provided we know how to do a
change of variables (or alternatively you could look at it as an application
of the chain rule in multiple dimensions).

Cp =

(
∂H

∂T

)
p

(26)

=

(
∂H

∂T

)
V

+

(
∂H

∂V

)
T

(
∂V

∂p

)
T

(27)

So now let’s evaluate the derivatives we’ll need.(
∂H

∂V

)
T

=

(
∂U

∂V

)
T

+ V

(
∂p

∂V

)
T

+ p (28)(
∂p

∂V

)
T

= − NkBT

(V −Nb)2
+

2aN2

V 3
(29)(

∂U

∂V

)
T

=
aN2

V 2
(30)

(
∂H
∂V

)
T(

∂p
∂V

)
T

=

aN2

V 2 + p+ V
(
∂p
∂V

)
T(

∂p
∂V

)
T

(31)

=
aN2

V 2 + p(
∂p
∂V

)
T

+ V (32)

=
NkBT
V−Nb

− NkBT
(V−Nb)2 + 2aN2

V 3

+ V (33)

= − 1

1− 2aN2

V 3

(V−Nb)2
NkBT

+ V (34)(
∂H

∂T

)
V

=
3

2
NkB +

NkB
V −Nb

(35)
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Putting it all together, we get:

Cp =

(
∂H

∂T

)
V

+

(
∂H

∂V

)
T

(
∂V

∂p

)
T

(36)

=
3

2
NkB +

NkB
V −Nb

− 1

1− 2aN2

V 3

(V−Nb)2
NkBT

+ V (37)
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Consider a system with one degree of freedom and Hamiltonian H = H(q, p).

(a) A new pair of coordinates Q and P is defined in terms of the coordinates
q and p so that

q =
√

2P sinQ and p =
√

2P cosQ .

Prove that if ∂H/∂q = −ṗ and ∂H/∂p = q̇, it automatically follows that
∂H/∂Q = −Ṗ and ∂H/∂P = Q̇.

(b) Show that the Hamiltonian of a one-dimensional harmonic oscillator with
mass m = 1 and force constant k = 1 is given by H = 1

2

(
q2 + p2

)
.

(c) Express the Hamiltonian of the one-dimensional harmonic oscillator from
part (b) in terms of the coordinates P and Q. Interpret P and Q and your
result.

(d) Solve the Hamiltonian equation for Q(t) and rewrite the result in terms
of q(t). Verify that your solution gives the expected behavior.
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A tiny sphere of charge Q and mass m is to be placed at rest at its equilibrium position a distance 
d directly below the center of an uncharged conducting sphere of radius R. The uncharged 
conducting sphere is fixed in position by an insulating rod that is attached to the ceiling. The tiny 
sphere (charge Q, mass m) floats in space despite the downward force of gravity.  

Derive an expression for d that is valid when d >> R. 

Hint: There exists a spherical zero-potential surface between any two point charges of 
opposite charge and non-equal magnitude. 

Problem 3 Monday afternoon 11

.
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An electron is subject to a uniform magnetic field        along z-axis. Measurements of the 

total spin angular momentum    and the z-component of the spin angular momentum    at a 

time       yield  
 

 
   and 

 

 
, respectively. At    , an additional uniform magnetic field 

   √     along y-axis is suddenly turned on. 

(a) What is the state vector      ⟩ at    ? Express it using the basis vectors   ⟩ and   ⟩, 

where     ⟩  
 

 
  ⟩ and     ⟩   

 

 
  ⟩. 

(b) Describe the temporal evolution of the state vector      ⟩ at     in terms of the basis 

vectors   ⟩ and   ⟩. 

(c) Find the probability that a measurement of    results in 
 

 
 at    . What is the 

maximum probability to get the result? When does it happen? 

(d) Calculate the expectation value of the Spin angular momentum   at    . The spin 

dynamics is periodic in time. What is the period? Sketch its temporal evolution in the 

three dimensional real space. 
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A semi-infinite opaque screen contains a slit which is infinite in length and of width b. The slit is
illuminated by a monochromatic plane wave of wavelength λ incident normally upon it.  

a) Derive an expression for the light intensity on a semi-circular screen of radius R >> b that 
is placed behind the slit (see the figure below).  

Hint: Huygen�s principle states that this diffraction pattern can be calculated by treating the 
gap (the slit of width b) as a surface covered by a continuum of point sources.

b) Sketch this light intensity pattern on a graph for two different cases: b = λ and b = 2λ. In 
both cases, label the angles at which maxima and minima occur.  

Problem 5 Tuesday morning 20

.
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.
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Consider a liquid composed of N identical molecules, each with a fixed dipole
momentD. There are strong interactions between molecules, given by a function
of the positions and orientations of all the molecules:

E(r1,D1, r2,D2, · · · ) (38)

You may take this function as an input, but may not make any assumptions
about its form. This energy E includes all electrostatic interactions between
molecules.

Each of your final answers to this problem should use only fundamental con-
stants, the temperature and the energy function above. You may, of course,
define and use intermediate results (e.g. your final equation will probably in-
volve β rather than T ).

(a) Find the total polarization of the liquid (i.e. the sum of the dipole mo-
ments of all the molecules) at temperature T in the absence of an external
electric field. You may assume any symmetries that are presence in ordi-
nary liquids (which might not be present in, e.g. liquid crystals).

(b) Find an expression (involving at most two multidimensional integrals)
for the variance of the total polarization 〈|P|2〉 at temperature T , in the
absence of an external electric field.

(c) Find a expression (involving at most two multidimensional integrals) for
the polarizability α of the liquid, defined by

P = αE (39)

where P is the total polarization of the liquid, and E is a small electric
field. You may assume that the only interaction with the electric field is
due to the fixed (in magnitude) dipole moments of the molecules.

(d) Find an expression with no integrals at all that relates α to 〈|P|2〉.
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Consider a liquid composed of N identical molecules, each with a fixed dipole
momentD. There are strong interactions between molecules, given by a function
of the positions and orientations of all the molecules:

E(r1,D1, r2,D2, · · · ) (40)

You may take this function as an input, but may not make any assumptions
about its form. This energy E includes all electrostatic interactions between
molecules.

Each of your final answers to this problem should use only fundamental con-
stants, the temperature and the energy function above. You may, of course,
define and use intermediate results (e.g. your final equation will probably in-
volve β rather than T ).

(a) Find the total polarization of the liquid (i.e. the sum of the dipole mo-
ments of all the molecules) at temperature T in the absence of an external
electric field. You may assume any symmetries that are presence in ordi-
nary liquids (which might not be present in, e.g. liquid crystals).

Solution: .

Ordinary liquids are rotationally symmetric. Therefore, the total polar-
ization must be independent of rotation, and must be zero.

(b) Find an expression (involving at most two multidimensional integrals)
for the variance of the total polarization 〈|P|2〉 at temperature T , in the
absence of an external electric field.

Solution: .

We need to average over all possible microstates.

〈|P|2〉 =

all states∑
s

Ps|Ps|2 (41)

where Ps is the probability of state s and Ps is the total polarization of
microstate s, which is given by:

Ps =

N∑
i

D
(s)
i (42)

where D
(s)
i is the dipole moment of the ith molecule in state s.
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We haven’t yet defined Ps, so our answer is not yet complete.

Ps =
e−βE(r

(s)
1 ,D

(s)
1 ,··· )

Z
(43)

Z =

all states∑
s

e−βE(r
(s)
1 ,D

(s)
1 ,··· ) (44)

Our answer, however, is still not complete, because we have not yet defined
the summation over all states which we have used twice now.

Z =

all states∑
s

e−βE(r
(s)
1 ,D

(s)
1 ,··· ) (45)

=

∫
d3r1d

3r2 · · · d3rN
∫
d2D1d

2D2 · · · d2DNe
−βE(r

(s)
1 ,D

(s)
1 ,··· ) (46)

where the d2Di integrals integrate over solid angle describing the direction
of each dipole moment. This turns our Ps into a probability density (it is
no longer dimensionless), which works out when we write our final answer
as:

〈|P|2〉 =

∫
d3r1d

3r2 · · · d3rN
∫
d2D1d

2D2 · · · d2DNe
−βE(r

(s)
1 ,D

(s)
1 ,··· )

(∑N
i Di

)
·
(∑N

j Dj

)
∫
d3r1d3r2 · · · d3rN

∫
d2D1d2D2 · · · d2DNe−βE(r

(s)
1 ,D

(s)
1 ,··· )

(47)

(c) Find a expression (involving at most two multidimensional integrals) for
the polarizability α of the liquid, defined by

P = αE (48)

where P is the total polarization of the liquid, and E is a small electric
field. You may assume that the only interaction with the electric field is
due to the fixed (in magnitude) dipole moments of the molecules.

Solution: .

To begin, we need to recognize how the energy of the system is changed
when we apply an electric field. The energy of each molecule is given by

Ui = −Di ·E (49)

and the total energy of interaction with the electric field is thus given by

U = −P ·E (50)

At this point, if we hadn’t used symmetry in the first part, we could just
throw in our extra electric field term, and we’d be golden. Instead, we’ll
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recognize that the formula for P is like Equation 47, but with a few minor
changes, adding the extra energy contribution and computing an average
of D instead of |D|2:

P(E) =

∫
d3r1d

3r2 · · · d3rN
∫
d2D1d

2D2 · · · d2DN

(∑N
i Di

)
e−β(E(r

(s)
1 ,D

(s)
1 ,··· )−

∑N
i Di·E∫

d3r1d3r2 · · · d3rN
∫
d2D1d2D2 · · · d2DNe−β(E(r

(s)
1 ,D

(s)
1 ,··· )−

∑N
i Di·E)

(51)

To find α, we’ll need to take a derivative with respect to E, and evaluate in
the limit as E→ 0. Since P and E are both vectors, we’ll need to be a bit
careful about how we perform the derivative. We know the polarizability α
must be a scalar because of the rotational symmetry of liquids, which tells
us that the polarization must be in the same direction as the electric field
(or opposite). Since we know this, let’s just calculate a single component
of the derivative of a single component of the polarization:

α =

(
∂Px
∂Ex

)
Ey,Ez,T

(52)

= β

∫
d3r1d

3r2 · · · d3rN
∫
d2D1d

2D2 · · · d2DN

(∑N
i Dix

)(∑N
j Djx

)
e−β(E(r

(s)
1 ,D

(s)
1 ,··· )−

∑N
i Di·E∫

d3r1d3r2 · · · d3rN
∫
d2D1d2D2 · · · d2DNe−β(E(r

(s)
1 ,D

(s)
1 ,··· )−

∑N
i Di·E)

+ β〈Px〉〈Px〉 (53)

where I took a bit of a shorthand (and shortcut on the second term in the
derivative, which came about from taking the derivative of the partition
function. This term is going to vanish when we consider small E, since
the polarization is zero in that limit. In fact, let’s just go ahead and take
this limit, setting E→ 0 so we find the linear response:

α = β

∫
d3r1d

3r2 · · · d3rN
∫
d2D1d

2D2 · · · d2DN

(∑N
i Dix

)(∑N
j Djx

)
e−βE(r

(s)
1 ,D

(s)
1 ,··· )∫

d3r1d3r2 · · · d3rN
∫
d2D1d2D2 · · · d2DNe−βE(r

(s)
1 ,D

(s)
1 ,··· )

(54)

(d) Find an expression with no integrals at all that relates α to 〈|P|2〉.

Solution: .
With only a very small amount of care, we can now see that Equation 53
is very close to our formula for the variance of the polarization. The only
difference is that we have just the x components of the dot product that
is in Equation 47. Fortunately, but rotational symmetry each of the three
components will be identical, so we can just divide by three and write

α =
〈|P|2〉
3kBT

(55)
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This is what is known as the fluctuation-dissipation theorem. The unusual-
looking factor of 3 comes about because the fluctuation-dissipation theo-
rem in its usual formulation would relate α to 〈P 2

x 〉.
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(a) Calculate the tidal force on a mass m near the surface of the earth (mass
Me) due to the moon (mass Mm) (see figure). Neglect all other celestial
bodies (like the sun).

The tidal force Ftid contains all effects on the mass m due to the moon:

mr̈ = mg + Ftid .

Here r is the position in the earth’s reference frame, which is not an inertial
frame.

(b) Discuss the relative size and direction of Ftid at the points P,Q,R, S in
the figure.

(c) Calculate the height difference between the tides at points P and Q. As-
sume that the oceans cover the whole surface of the earth. You may also
assume that the surface of the ocean is an equipotential surface.
Make appropriate approximations based on the fact that the distance d0
between the earth and the moon is much larger than the radius Re of the
earth: Re/d0 � 1.
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In an ionic crystal, a spinless ion of charge    and mass   is placed in a cubic lattice which 

gives rise to a spherically symmetric harmonic potential  

 ( )  
 

 
      

 

 
   (        ) 

where   is the distance from the equilibrium position of the ion. 

(a)  Find the energy eigenstates and eigenvalues of the ion in the three-dimensional 

harmonic potential. If any energy level is degenerated, find its degree of degeneracy. 

(b) When a weak, uniform magnetic field is applied along the   axis, magnetic dipole 

interaction gives rise to the perturbation Hamiltonian, 

         
  

   
   

  

   
(       ) 

where   is the magnetic field amplitude,   is the speed of light, and    is the   

component of the orbital angular momentum  . Calculate the energy shifts of the 

ground state and the 1st excited states up to the 1st order of the perturbation theory.  

Problem 8 Tuesday afternoon 33
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