Department of Physics Comprehensive Examination # 91

Part I

27 August 2001

This Comprehensive Examination for Fall 2001 consists of eight Problems each worth 20 points. The
Problems are grouped into four sessions:

Session 1 Problems 1,2 811 AM Monday 24 September
Session 2 Problems 3,4 12-3 PM Monday 24 September
Session 3 Problems 5,6 8-11 AM  Tuesday 25 September
Session 4 Problems 7,8 123 PM  Tuesday 25 September

Work carefully, indicate your reasoning, and display your work clearly. Even if you do not complete a
problem, it is possible to obtain partial credit, especially if you demonstrate conceptual understanding. Do
all work in the bluebooks, work each problem in its own pumbered bluebook, and be certain that your chosen
student letter, but not your name, is on the inside of the back cover of every bluebook. Be sure to remember
your student letter for use in the remaining sessions of the examination. If something is omitted from the
statement of the problem or you feel there is an ambiguity, please ask your question quietly and privately, so
as not to disturb the others. Only your bluebooks and the examination should be on the table before you.
Any other items should be stored on the floor. Calculators are not allowed. Please return all bluebooks and
formula sheets at the end of the exam.

Use the last pages of your bluebooks for scratch work separated by at least one page from your solutions.
Seratch work will not be graded. '



1. An unstable elementary particle decays at rest in the laboratory into a #* and a n° meson. These
two 7 mesons have the same mass, m, = 140 MeV/c®. In the laboratory reference frame, the 7° is
observed to have a speed v = 0.825¢. Determine numerical answers to the following:

(a)
(b)

{c)

Calculate the rest mass of the unstable elementary particle.
The ©° meson, while moving in a straight line with speed v = 0.825¢, decays into two photons
(each with zero rest mass):

T - Yty
As viewed in the rest frame of the m° meson, the photons are emitted at right angles to the
original line of flight of the #° meson.
Find the angle between the direction of motion of a photon and the line of flight of the 7° meson
in the laboratory frame of reference.

While the 7° meson was decaying into two photons, the nt meson decayed into a g meson (of
mass 105 MeV/¢®) and 2 neutrino (of zero mass):

ot 5 pF 4w

The energy of the ¢ meson measured in the laboratory could have a range of values, depending
on the angle at which it was emitted.

Find the minimum energy which the g meson could conceivably have. For this case, indicate its
direction of motion relative to that of the % meson in the laboratory.
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2. Two noninteracting particles of equal mass m are in a one-dimensional potential well. The well has
infinitely high walls separated by a distance a, and is represented by the potential function

V()‘_{O, for0<z<a,
#1% o0, forz<0,0rz>a.

(2) "Write down the Hamiltonian describing this two-particle system. Use the notation that particle
1 has coordinate z; and particle 2 has coordinate 3.

(b) Give the most general solution of the time-dependent Schrédinger equation for this problem.

fc)~Show that the following wave function satisfies the two-particle time-independent Schrédinger
equation for this potential, o

o[ 1 . (Brz . 37z, AN LTI
\I’(zhzz):; Wsm —sin = -~ gt sin ——sin =1

(d) Determine the energy eigenvalue for.this state and verify that ¥(zy, z2) is normalized.

{¢) Does particle 2 have a well-defined kinetic energy? Explain.

(f) Suppose that the kinetic energy of particle 1 is measured, and that no measurement is made for
particle 2. What are the possible measured values of the kinetic energy of particle 17 What are -
the probabilities associated with these measured values?

(g) If the preceding kinetic energy measurement yields the lowest allowed value, how would you write
the normalized wave function for the system, after the measurement?

(h) After this measurement, what are the possible results of a subsequent measurement of the kinetic
energy of particle 27

(i)’ Explain how your answers to parts (e) and (h) are compatible. In particular, how can a measure-
ment on particle 1 &h{ affect the results for particle 2, even though the particles are noninteracting.
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3. A two-dimensional quantum-mechanical rigid rotator consists of two particles having equal masses m,
separated by a fixed distance 2a, and constrained to rotate in the z — y plane. In terms of the angular
momentum L., the Hamiltonian is ,

Ly

H O - §“f

where [ = 2ma®,

(a) Find the energy eigenvalues, the corresponding normalized eigenfunctions, and the degree of
degeneracy of each energy level.

{b) Suppose that the two masses have charges 1, and that a uniform static electric field E = E% acts
in the z-direction. Calculate the energy level shift for the lowest-energy state, using stationary
perturbation theory through second order.

{c) Instead of the static field in part (b), a spatially uniform but time-dependent electric field E(t) =
E,e~*!T% is applied to the rotator, beginning at time ¢ = 0. Assume that this field is weak, and
that the system is initially in its ground state. Using first-order time-dependent perturbation
theory, calculate the probability that the rotator will be in an excited gtate at time { == co.

(d) What criterion would you propose for the field in part {c) to be “weak”?
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Figure 1: Side view of rotator. The 2R bar rotates in the horizontal plane perpendicular to the page. The
pendulum swings in a plane perpendicular to the plane of the pivot and the 2R bar.

4, As shown in the figure, two equal masses M are connected to a very light horizontal beam. One of
the masses is connected directly to the end of the beam, and the other is connected to the beam by
a very light vertical rod of length £. The horizontal beam of length 2R is pivoted at its center such
that it always remains horizontal but is otherwise free to rotate. The pendulum is pivoted such that
it always moves in a vertical plane whose normal is along the direction of the beam. The pivots are
both frictionless.

{a) What are the equations of motion for each mass?

(b) If the displacement of the pendulum is small, what are the general solutions of the equations of
motion for each mass?

(¢) The system, initially at rest, is disturbed by a small, fast, horizontal, and tangential blow to the
mass on the vertical rod. Determine and sketch the resulting angular velocity of the beam.

(d) What are the frequencies of the normal modes of oscillation?
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5. One mole of an ideal monatomic gas, used as the working substance in a heat engine goes
through the cycle indicated in the diagram below. In the limit that ﬁ >> 1, while fl-l; is not,

0.4AP
show that the efficiency, 77, of this engine can be approximated by 77 =~ P
H

f
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Figure 2: Alignment of the Spheres

6. A paramagnetic sphere of radius R and magnetic susceptibility xm is placed in a uniform magnetic
field Ho and magnetic induction By. Note that paramagnetic susceptibilities are normally very small.

(a) Calculate the magnetic field H and magnetic induction B produced by the sphere. Sketch the
fields and explain any differences between the two.

(b) Find the total force and torque that the external field exerts on the sphere.

{c) Now suppose that two identical spheres are touching one another and lined up along the field lines
as shown in the figure. Calculate the force between them. Note that several ways of doing this
result in integrals that are hopeless to evaluate. Be careful to choose a method with some chance
of success. Even if you are not able to finish the calculation, set up your integral carefully and

explain your notation and your method.
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7. Quantized spin waves are called magnons. Magnon energies in the lowest approximation can be ex-
pressed as hw & 25Ja’k?, where § is the maximum spin value at each site, k is the wave number, J
is the exchange integral, and a is the lattice constant. Given that magnons are bosons, determine the
temperature dependence of the specific heat at constant volume, Cv, for a {erromagnet represented as
a collection of N magnons.

8. A simple model for the propagation of electromagnetic waves through matter assumes that the electrons
behave like damped, driven harmonic oscillators.

(a) Suppose that a single electron has a “spring constant” mw?, a damping force —myv, and is acted
on by an electric field E{x,t}. Write the equation of motion. Explain the physical interpretation
of the various terms in the equation.

(b} Let E{x,t) be the usual time harmonic field
E(x,t) = E(x)e™**

Solve the equation of motion for the displacement x(t).

(c) If we assume there are N such electrons per unit volume in the solid that behave like this (pre-‘
sumably all the other electrons are tightly bound to atoms and don’t move), then all the basic
properties of conductors and dielectrics can be expressed as complex functions of w, ws, m, N,
and «. Find the conductivity ', the electric susceptibility x., the permittivity ¢, and the dielectric
constant n.

{d) If the electrons are not bound, i.e. if w. =0 and w is not too large, then this model describes an
ordinary conductor that obeys ohm’s law. The conductivity is real in this case; we usually call it
o. Derive a simple formula for o. '

(¢) When the electromagnetic wave propagates through this conductor it has a complex wave number
k. Derive a formula for the real and imaginary parts of k assuming that ¢ is large. The following
approximate formula (y 3> z) will be useful.

JZF g (L4 )y/2

(f) Suppose a plane-polarized electromagnetic wave travelling through vacuum is incident on a con-
ductor of the sort we have just described. State the appropriate boundary conditions that must
be satisfied at the surface of the conductor.

(g) In order to simplify the problem, assume that the wave is normally incident on the conductor.
Calculate the phase and intensity of the reflected wave relative to the incident wave. Calculate
the skin depth. Express your result in terms of the real and imaginary parts of n {or k) using the
results of (e} above.
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