Department of Physics Comprehensive Examination # 90

Part I
2 April 2001

This Comprehensive Examination for Spring 2001 consists of eight problems each worth 20 points. The
problems are grouped into four sessions:

Session 1 problems 1,2 811 AM  Mon 2 April
Session 2 problems 3,4 12-3 PM  Mon 2 April
Session 3 problems 5,6 8-11 AM  Tues 3 April
Session 4 problems 7,8 12-3 PM  Tues 3 April

Work carefully, indicate your reasoning, and display your work cleatly. Even if you do not complete a
problem, it is possible to obtain partial credit, especially. if you demonstrate conceptual understanding. Do
all work in the bluebooks, work each problem in its own numbered bluebook, and be.certain that your chosen
student letter, but not your name, is on the inside of the back cover of .every bluebook. Be sure to remember -
your student letter for use in the remaining sessions of the examination. If something is omitted from the
statement of the problem or you feel there is an ambiguity, please ask your question quietly and privately, so
as not to disturb the others. Only your bluebooks and the examination should be on the table before you.
Any other items should be stored on the floor. Calculators are not allowed. Please return all bluebooks and
formula sheets at the end of the exam.

Use the last pages of your bluebooks for scratch work separated by at least one page from your solutions.

Scratch work will not be graded.



1. A spring with a linear spring constant k is attached to a mass m and is free to oscillate in one dimension.
There is a viscous frictional force —bv, where b is a constant and v is the velocity. The mass has an
initial velocity of ¥y and an initial position of zs.

(a) Derive the solution for the position as a function of time z(t) in the absence of friction.

(b) Deduce the frequency wo that the system oscillates with in the absence of friction.

(e
{d

} Derive the time-dependent solution z(t) in the presence of friction.
) Deduce the frequency w that the system oscillates with in the presence of friction, and the condi-
tion(s} on b for there to be oscillations.

(e} A sinusoidal force F cosf now drives the mass (which remains attached to the spring). Deduce
what must be the most general form of the new solution z(t) for this system. If your solution
contains parameters, make sure to indicate how they are to be determined. While you must give
the complete form of all equations that must be solved, you do not actually have to solve these
equations.

9. A magnetic material is in the shape of a right circular cylinder of length L and radius . The cylinder
has a uniform constant permanent magnetization M, parallel to its axis.

(a) Determine the magnetic field H and magnetic induction B at all points on the axis of the cylinder,
both inside and outside.

(b} Sketch the field lines of both H and B.

(¢) Sketch the ratios II%/IW and % on the axis as functions of z. Describe the physical reasoning
4} [+}

4]
you used to arrive at the shapes of these curves.



3. A one-dimensional quantum oscillator of frequency w and mass m is perturbed by the addition of a
potential V{z) = imdz?. .

(a} Using non-degenerate perturbation theory, find the energy of the ground state up to second order
in A. (Hint: You may find it useful to employ the completeness relation =510

{b) The exact solution is easy to find for this potential. Expand the exact ground state epergy in
powers of A and compare with the perturbation result of part (a).

4. Consider a degenerate Fermi gas of free electrons which has a chemical potential of 20 MeV (million
electron volts), and which is at a temperature of 10°® K.

Derive an expression for'the pressure P in such a gas.



5. In the so-called “porous plug” experiment utilizing the Joule-Kelvin (Joule-Thomson) effect, a gas is
made to pass through a constriction from a region of higher to lower pressure. This process is often
referred to as “throttling”, and can be well characterized as isenthalpic. Under some conditions a gas
will cool down throttled, under other conditions it will heat up, and under certain conditions it will do
neither.

(a) Find an expression for the partial derivative (%) % describing this process.
{b) Consider a gas obeying the Dieterici equation of state,

a
Pexp(m)(v - I)) = RT,

where @ and b are constants characteristic of the gas. Show that the temperature Ty at which no
change of temperature will occur in such a gas being throttled is given by

2a [V ~b
n=3 ()

6. A long straight wire carries a constant current I. It is made of a material with resistivity n and

cross-sectional area a.

(a) Find the magnetic induction B and electric field B outside the wire. {The electric field E is
ambiguous unless some boundary conditions are specified. You may assume that the wire is
stretched between two infinite parallel conducting plates perpendicular to the wire.)

(b) Sketch the lines of force for these two fields.
{c) Find the radiated power per unit area.

(d) In what direction is it radiated?

(¢) What is the total power radiated?

(f) What is the physical meaning of your result?



7. Consider the tent map

1 ) {2#%, for0<z, <1
Ly — = = 1 -

2 2u(1 ~zy,), forg<zn<1l
(2) Determine algebraically the fired points for # < } (state conditions on ).

(b) Determine algebraically the fized points for z > & (state conditions on p).

:cn_'i,l—_-,u(l~2

(c) Deduce (preferably algebraically) whether any of the fixed points are stable.

{d) Use a graphical technique (ask for graph paper) to show the properties of fired attractors for
p = 0.25,0.65,0.75.

8. Consider the potential

] for z > ’I,;;—,
Viz) = { —|W| for % >z>0,
oo for 0> =

Find the allowed energies and the corresponding (unnormalized) wavefunctions for this potential. If

you deduce an equation that can be solved only numerically, you may give that equation as your
answer; however, in that case you should explain the number of solutions expected.
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GRADUATE THERMAL PHYSICS PROBLEM - Spring Comp Exam: April 2 & 3, 2001

Consider a degenerate Fermi gas of electrons which has a chemical potential ‘of 20 MeV, *
and which is at a temperature of 108k

F ~ T

Derive an expression for the pressure, P, in such a gas.

(1) A chemical potential of this value means that the average energy of the electrons is &,,, = 0.6 14, , which, in turn,

corresponds to a Fermi temperature of about
T, . ~06u,/kx23x 16" K. Since this is so much greater than the temperature of the gas, we are entitled to

Jermi

apply the zero-temperature approximation for Fermi statistics.

(2) As well, since these electrons have energies >> mocz, the relativistic relation

E= J (pc:)2 + (moc:a )2 must be used to express this quantity.

E = ZZ:J(pc)2 + (macz)2 = %Tél?sz(pCf + (mocz)zdp

{d=r,

Po ) W3
3n°N

§£§V"Ip2dp Thus, po - h[.__.ﬁw_\

0

h

The value of p, can be determined from N =

v )

Putting y = -ﬁ*, allows one to write the integral for £ as
me

4 51770 4 .5
B = MR ) = G0

) h
o [ &\ .
Now the pressure is givenby P = - 57— - Realizing that G(y,) has a dependence on
T
4.5
V. we get the following expression £ = —{%T = %{—G(VO) - V%('Z"—)},
113
. h (WN\
h = = .
whete Yo m,c me\ ¥V J
Now, & (,53_]( 2, _ Miz&(ﬁ], A
& &)\ 3V \3, &,

Yo
SO,ﬁnaliy,P = —:é—g—;{wjyz(l . yzj"zay + _232(1 + yi)l.fz}.



-

For the relativistic situation that we are examining here, y,

127250 ¥° 1272° K

mic® (37N

>> 1, and so the expression for F becomes

4/3

Thus, finally, P~ 1228\ vV )

4.2
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@ UNDERGRADUATE THERMAL PHYSICS PROBLEM FOR SPRING 2001 COMP EXAM

In the so-called "porous plug" experiment, utilizing the Joule-Kelvin (Joule-Thomson) effect, a gas is made to pass
through a constriction from a region of higher to lower pressure. This process is often referred to as throttling, and can -
be well characterized as isenthalpic. Under some conditions, a gas will cool down upon being throttled, under other
conditions, it will heat up, and under certain conditions it will do neither.

() Find an expression for the partial derivative [—E) describing this process.
H

(b) The Dieterici equation of state is givenby . P exp ["j{%} V- b) = RT.

Consider a gas obeying this equation of state. Show that the temperature, 7, at which-no change of temperature will
occur in such a gas being throttled is given by

T = _g_g_(meb)
* T R\ ¥
(a) The enthalpy isgivenby H = U + PV, and so its differential by

dH = TdS + VdP. Expanding the entropy differential as dS = (%}po + (_;']é‘)PdT

allows dH = T{g)rd}’ + T(—;S?) PdT + VdP. Now, a process occurring
isenthalpically is one for which dH = 0. Equating our expression to zero yiclds
[ A ]
0 = (Cpdl' + 1V - — dP
? | \ar), ["

where use has been made of the following Maxell relation, namely that

(& _ (N
@), = \a),

Thus, we see that k}; y ., = , an expression that is always zero for the

case of an ideal gas.



(b) The Dieterici EOS is given by P exp [ R;V} - b) = RT. Taking partials with respect to temperature
of both sides of the equation, and gathering terms together yields
{ N (RTV + &V -~ b v o= o

"a), =V = v ~ awv - 9

2a(V - b)

solving for T produces a form for T, of 7, = B\
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