Physics Department Comprehensive Examination #65.
March 31 and April 1, 1992.

Comprehensive examination for Spring 1992.
Part 1.

General Instructions.

This Comprehensive Examination for Spriﬁg 1992 (#65) consists of eight problems of equal
weight (20 points each). It has two parts. The first part (Problems 1-4) is handed out at 1:00 pm on
Tuesday, March 31, and that part of the exam lasts three hours. The second part {(Problems 5-8) will
be handed out at 1:00 pm én Wednesdé,y, April 1, and that part also lasts three hours. Be sure to make

a note of your assigned student letter for use in the second part of the examination.

Work carefully, indicate your reasoning, and display your work clearly. Even if you do not
complete a problem, it might be possible to obtain partial credit - especially if your understanding is
manifest. Use no scratch paper, do all work in the bluebooks. Use one bluebook per problem, and be

certain that your assigned student letter (but NOT your name) is on every booklet.

If something is omitted from the statement of the problem or if you feel there are ambiguities,
please get up and ask your question quietly and privately, so as not to disturb the others. During the
exam, put all materials, books, and papers on the floor, except the exam, bluebooks, and the collection
of formulas and data distzibuted with the exam. Calculators are NOT allowed. Please return all

bluebooks and formula sheets at the end of the exam.

Use the last pages of your bluebooks for "scratch” work, separated by at least one empiy page

from your solutions. This scratch-work will not be graded.



Physics Department Comprehensive Examination #65.
Part 1, Tuesday 31 March 1992, 1-4 pm.

Problem 1.
Consider the time-independent Schrédinger equation in D spatial dimensions for a spinless particle ina
central potential.
A. ‘How many quantum numbers are needed to label the quantum states?
The central potential in parts B through F of this problem is an isotropic harmonic oscillator potential
in D dimensions: V(xl,..,xD):—%,uwzz:x% , where p is the mass of the particle.
B. Show that the energy levels are gizven by (n+%D)hw with n=0,1,2,...
C. The degeneracy of the ntP level of the D dimensional harmonic oscillator is g(D,n). Calculate
g(D=1,n) as a function of n.
D. Calculate g{D,n=0) and g(D,n=1) as functions of D.
E. Derive a formula for g(D,n) in terms of g(D ~ 1,k) for all k.
F. Calculate g(D=3,n) as a function of n.

Problem 2.

Consider a gas of N molecules of CO at temperature T confined to a volume V. Each molecule has a

moment of inertia L.

A. Show that the partition function for the rotational motion is given by
%rot;{ i(zl'*“l)exP[“?“Mié‘ii—“l‘l} }N~

What is ©,,7 =0 N

B. Show that for high temperatures B, 4 z( —G-_)-T—— ) . How large does T have to be for th1<: expression

to be valid? (Give a condition of the form T >» something).

C. Give a general expression for the rotational contribution to the heat capacity Cy, as & function of

%,.,¢ and T. Evaluate this expression for large T.

D. What is the rotational contribution to the pressure?

E. How would the answer to part A change if the molecules were 1602, a diatomic molecule of 40

where each %0 atom is a spinless boson?
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Problem 3.
A small circular loop of wire has a radius a. The center of this loop lies a distance z above the center of
a largé circular loop of wire, The large loop has a radius b. The planes of the loops are parallel and are
'perﬁendicular to the common a.:us We are given that a € band a € 2
A. Suppose a current I flows in the big loop in the direction indicated.
Calculate the flux through the little loop.

)

B. Suppose, instead, that a current [ flows in the small loop in the same

direction as the current in part A. Calculate the flux through the big loop. Z
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Problem 4.. ,
A thin uniform red, of fength I and mass m, has one end touching the floor, which is horizontal, and
the other end leaning against a vertical wall. Under the influence of gravity the rod slips downward,
beginning froh rést with an angle © = €, and remaining in a vertical plane perpendicular to the wall.

If there is no friction, find the value of @ when the upper end of the rod looses contact with the wall.
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Physics Department Comprehensive Examination #65.
March 31 and April 1, 1992,

Comprebensive examination for Spring 1992.

Part il.

General Instructions.

This Comprehensive Examination for Spring 1992 (#65) consists of eight problems of equal
weight (20 points each). It has two parts. The first part (Problems 1-4) was handed out at 1:00 pm on
Tuesday, Ma,rch‘ 31, and that part of the exarn lasted three hours. The second part (Pa;oBlems 5-8) is
" handed out at 1:00 pm on Wednesday, April 1, and that part also lasts three hours. -

‘ Work carefully, indicate your reasoning, and display your work clearly. Even if you do not
complete a problem, it might be possible to obtain partial credit - especially if your understanding is
manifest. Use no scratch paper, do all work in the bluebooks. Use one bluebook per problem, and be

certain that your assigned student letter (but NOT your name) is on every booklet.

If something is omitted from the statement of the problem or if you feel there are ambiguities, -
please get up and ask your question quietly and privately, so as net to disturb the others. During the
exam, put all materials, books, and papers on the floor, except the exam, bluebooks, and the collection
of formulas and data distributed with the exam. Calculators are NOT allowed. Please return all

bluebooks and formula sheets at- the end of the exam.

Use the last pages of your bluebooks for "scratch” work, separated by at least one empty page

from ybur solutions. This scratch-work will not be graded.



Physics Department Comprehensive Examination #65.
Part 2. Wednesday 1 April 1992, 1-4 pm.

o Problem 5.
. o)
The time independent Schridinger equation in matrix form is Y, Hpgy, oy = A ¢y for n=1,2,... The
m =1 o
solutions for the coefficients of the wave functions are normaliz ed cording to 3, | ¢y [2==1.

&0 m=1
A. Show that the matnx equation above is equivalent to ¢, = Z hnm Cm

with hyp=Hym (1 = fpm 3/ (A = Hpp )
In parts B through E of this problem we are oﬁly interested in a particular solution of the matrix
equation for which we know that | ¢; |* > E l Cm 12
B. Use an 1teratwe procedure based on the matrlx equation derived in part A and using the fact that
S is small for m>1 to show how ¢y, can be found § in terms of € to any desired order.
C. Apply your procedure to the case n=1 to obtain an elgenvalue condition for A.
D. Assume that Hnn:n ¢ and H,,=gforn#m,|g]| < ¢ After multiplying the expression found in
part C by A —¢, the expression looks like a pert;urbatic;n expansion. Consider the terms proportional to
g with n < 2. How do these terms differ from the correspondmg expressions in standard Rayleigh-
ochrodmger perturbatmn theory? _ ‘
_E. The same techmque can be applied for a finite basis. Assume that we have only two coefficients, ¢;
- and ¢y We are interested in a state with fe; ] > 1eg ] The Hamiltonian is the same as in the
previous part of the problem: Hyq=¢, Hyy=4¢, and H,,=Hy =g with | g | « e Show that the second-

order ekpansion of part B gives the exact answer for the eigenvalue in this case.

Problem 6.

A uniform stretched string with fixed ends at x=0 and x=L has tension T, density p, and propagation‘

velocity \J_ At time t=0, when the strmg has no initial displacement, it is set into transverse motion

by being struck by a small hammer of w1dth 23, centered at xm-mL "This section of the string is given an
initial velocity vy The effects of gravity are negligible. Describe the subsequent wave motion of the

string by developing a Fourier series for the transverse displacement y(x,t). Evaluate the Fourier

Weg@s.& tle given quantities.
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Problem 7.
A steam engine works by evaporating water to steam, then extracting the mechanical energy of: the
steam’s pressure to do mechanical work. Consider a steam engine pulling a frictionless train of cars
holding water and fuel. The mass of the empty train is Mg, the mass of the water is My, and the
mass of the fuel is M p. The energy released when burning a unit mass of fuel is J 5. Assume that the
engine uses all the energy released by burning the fuel to evaporate the water and bring the steam to a
temperature of 200°C. The heat required for this process per mole of water is Hyyy. The engine then
extracts the energy from the steam using a reversible, adiabatic expansion of the steam until the steam
reaches a tembera.ture of 100°C. The adiabatic index v of water is %.
A. Calculate the fraction fof the fuel’s energy which is available to do mechanical work.
B. The train moves 10 km up a hill with a 1% grade. The amount of fuel used during this trip is m p.
Calculate m g, assuming that mp < M p.
C. The amount of water used during this txip is myy. Calculate myy, assuming that my, < MW

Problem 8.
: o + q
A. Two electrical charges +¢ and — ¢ lie a distance 24 apart

and a distance b above an infinite plane conductor as shown

©

on the right. Calculate the total energy stored in this

S N

Contlnekon,

configuration,
VAV AV PVl

B. Calculate the interaction energy of two electric dipoles

which are a distance 2b apart and whose dipole moments [5;

1
=

and P, are anti-parallel, equal in magpitude, and
perpendicular to the line joining them, as shown on the right.

C. Compare the result of part B with the appropriate limit of

LI I I N S R

N
o

the result in part A. Explain why there is a difference of a

factor of two.
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FORMULAS AND DATA FOR COMPREHENSIVE EXAMINATION

- Please Return After Exam -

CONSTANTS
B o= 6.63-10°% joule-sec = 4.14-1075 eV-sec a, = h*/m, € = 0.529 A
¢ = 3-10° mfsec k = 1.38-10"% joule/K
E, - ";j:: - 136 ¢V N, = 6.022-10%/mole
Volume of Ideal Gas (STP) = 22.4 lfmole mee::2 = 0.511 MeV
m,c? = 93828 MeV . m c? = 939.57 MeV

o e? 1
he = 197.3 MeV Fermi +e = 57
by = Zf,c - 05791071 MeVigauss - 9.27-10"2" erglgauss

1 MeV = 1.602x107 erg

GEOMETRY
V(o +¥) = Vo +Vy cirl carl F = grad div F- VQF
Wow) = oVi+yVe ] | cirl Vo =0
div(F+G) = div F+div G . ng fida = f div Fdv
cirl(F+ @) = cirl F+cirl G , ng-dl = f cirl F-iida
VF-G) = (F-9 ”+(G°--V")F‘+ﬁxc"rl G+Gxeurl F . f«pﬁda = fﬁ’@dv
. 5
div oF = ¢ div F+F-Vg § F(G-mda = [ F div Gav+ [ (G-DFdv
div(FxG) = G-cirl F-F-curl G § fixFda = [ cirl Fdv
div el F = 0 ftpdf = fﬁx‘-\'}'(pda
cirl (¢F) = o cirl F+VoxF fV(tW% -V dv = f(tpgr“édtp - @ grad ) -fida
. s

— o

cirl(FxG) = F div G-G div F+(G-VF-(F- G‘T
Ex(ﬁxf’) = B'(Z'C‘.)"C‘(X'B’)



Coordinates (p, $, 2

Gradient
Divergence

Laplacian

Curl

Coordinates (r, 8, ¢)

Gradient

Curl

Divergence

Laplacian

CYLINDRICAL COORDINATES

Unit vectors (I, Iy i3)

R A

Vf =i, = +i,—=2+],

f 13p ‘zpa¢ zaaz

e a4, adA
pap  °F o oz

o - o104 0S4} {04 04} . : 0A
Vx4 = il(}m z - ¢]+i2( £~ z]+' [ii(p.dd,)*i**ﬂ
oz dp

SPHERICAL COORDINATES
Unit vectors (i, Iy, iy)

S T ~13 » 1 o
Vf = _Q.f.-g- e e e - i st
¥ = 7 8 S reing B0

1 a4, 10
 rsin® o¢ r or
(12 041 aA,}

. ' aA
¥4 = L2024y 2L O (sinpay +—— 2
23 rsin® o0 rsin® o¢

Vi = 139 rz_ga._f_')+__i o sine-gf-— N of
r2 or or; rlsing 09 00; r2sin®0 aq)z

P



OTHER MATH

e = 3 (21+1)i%j,(kr) P,(cosB) [Tetdy = 2m8 ()

=0
sz sing cosz, -CO8Z, "COSﬁ sinz
Jo(z) E— 1( ) B ey HG(Z) = s n1( ) - I
z 22 z b4 z z
™ gmp,

P =1 P =% P = %(3;:24); P, = %(5x3—3x); PM = (1-x7)2 —

Yg ] M.l,'m' 1 = icose; Y:l = -?—-einine;
\/_ 4n ' \] 8n
5 =2-Geoto-1; ' =3 15 uo0snsing; Y2 = ,| > e*Msin®
8x Wi T2 T 3



OTHER MATH (continued)

“ - n! ,
f x"e ®dx = ——  n=integer
0 am-l

fsinzxdx = -;—(x-cosx sin x)

f‘”xz'*e'“”*’ dr = 1,3,5..2n-1y/n
1} 2n+1 aZn+1

Inn! = %lnz'::n+ninn~—n
fzﬂsinnxsinmxdxmam nmz1
0

f:“cosnxcosmdx =x§,, nm0

a>0

n=integer

sinnpa = 2sin(r-1)a ‘cos a -sin(n -2)a

cosne = 2cos(n-1a cosa-cos(n-2)a
sin{fa + B) = sine cosP + cosesinp

cos{e + P) = cosacosP ¥ sinasinp

tang +tan B

tan(a + B) = 1 +tane tan P

sina +sinp =2sin—;-(oc +B) - cos—;-(ot -B)
sina -sinp =2cos-%(a +B) - sin-;-(a -B)
cosa +cosB =2cos-;~(a +3) - cos%(a -B)

coso ~cosP = —Zsin%(a +B) sin%(a -B)

e*-e™*

2

sinkx =

T



QUANTUM MECHANICS

lim> =Y |mm,><mm,|jm> J* | jm > = hJ(jzm)(jrm +1) lmﬁ1‘>
Zi
,
Yy = T 205 exp(wr/ao | _ El = E +<n|V|n>+Y |<n|V|m> |
m+n E "Em
<nlxin’> = ntl
1=l J mm\] Snvrnt J mw\lp _
na*
'<n|p|n’> = —z\/mm \lﬁ Betn/ z\/mfw( j E, pon = f.g._".;_!l?_
ELECTRICITY AND MAGNETISM
§= toiom, 30D7 U=Y A,re®+3 B ree A lnp
4m r?f r’ p=1 p~0

u=Y [APrPPp (cosd) +B,r ""-“’"-”Pp(coscb)]
p=0

P vx[wﬁxﬁ'-f”)]w

41 ‘r r"i3
'Em ff x (7’ “i‘)

4n Y |r —r|3
Bl

2na

toaa






Problem 1:

A. We need D quantum nuxﬁbers.

_ D
B. The Schrédinger equati ol 2 x2
gel equation ig gl{ Do A, + m w* x? } WXy, -Xp). This separates into D one-

1
dimensional equations with energy eigenvalues (n; +2)hw Hence the energy eigenvalues of the )

dimensional oscillator are (n+3DYhw with n= Z n;.
t=1

C. If D=1, n=n,, and there is no degeneracy. g(1,n)=1.

" b 11 hy - e .
D. K n=0, a n; have to be zero, and g(D,0)=1. If n 1, one of the n. has to be one, the others zero
h t
and g(D,l):D. 7’ , ’

E. The degeneracy is the total number of ways D non-negative integers can sum up to n. If np=m, the
- — el

remaini -

maining D1 quantum numbers have to sum to n-—m. Therefore g(D n)“%
)=

. . m=0

gD—1n— m);—:ni'ﬂ g(D —1,m).

M =0

Prﬂb} " :

Ik
F.og(2n)=3 g(lm) = n+1. g(3n)§1 3 {n+1)=3 (n+1) (n+2).

SOLUTION

(2) The rotational states have degeneracies 2/+1 and energies H2I(+1)/21, 50 Byop = T2/2IK .
(b) If T » By , We can approximate the sum by an integral,

(=

(3, @H+Dexpl-Oror/(-+1)/T] = <Gf dl 2+ 1)exp-Broil(+1)/T] = T/Broy using y = I(l+1)
=0

dF
() F=-kTInZ, S=- ‘é""‘,’i,"‘
3UY _(E+TS) 93 _28) P
_au +S + T e = o =T
Cy= po 3T )V oT oT oT?

B 1 3
= 2kTN—T--k’E’2NT2 = Nk

3 oln Z oln Z
— inZ T - =2kT +
kT _};1}(“ T T ]v oT )V

: - oF
(d 0,Zis independent of V — F is independent of N — Prot = — "")r =

(e) Boson wave functions must not change when the coordinates of the atoms are mterchanged
but the parity of the rotational wave function Y is (5), so only even { are allowed in the

sum.
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roblem #. 5

. . H
A. Schrédinger’s equation gives ¢, = 3 ni

m#ﬂA“Hnn Cm = >

Bpym Cme
m=1

. o0
B. Hence ¢, = hyy ¢ + Y, hpm e The second term is much smaller than the first and we can
‘ m=2

. . [o.2]
replace c,y, in that term by the same expression ¢ = hpy ¢ +mz—:' , hym (b & +l 22 ho ep-

------

o.2] Q0
Repeating this process gives ¢, =My, (}) ¢; with My, (A)=hp, + Y hpmbmt 2 i by B by
. m=2 m=2 =2

where h is a function of A.

C. My;(A)=1

D. hozg (1= 65 )/(A—n2), hence M;;(3)=0 + g? el which leads t
nm=8 { /(€ ), hence My;(}) ngm (’\"Q(A“mﬁ lcn leads 1o
o0 .
A=+ g —2L . The ordinary formula has a 1 — m? in the denominator. This perturbation
& "m=2 (A-mE)

expansion gives an implicit relation for A

E. Need to solve ({; }\)(45.. A)=g?, which also follows from part D.
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Physics Department Comprehensive Exam # 65, March 3 1-April 1, 1992
SOLUTIONS

Problem #7

(A)

(B)

(©

Air is nearly an ideal non-interacting gas. Cp=Cyv +R, Cp/Cy =y=4/3 -»Cy =3 R for
_work in_
energy out’

Adiabatic expansion—energy out per mole of water = change in internal energy (dU =-Pdv
+ T dS, dS = 0 for adiabat)— AU = 3RAT per mole, f = AU/Hw = 3R(100 K)/Hw . This

wiater— U = 3RT per mole. Efficiency f = Hyw = energy in per mole of water.

" part can also be done by integrating PVY = constant in the P-V diagram.

Work done = potential energy change = mygt g Ah,
Mot = ME + Mw+ MF, Ah = 1% x 10 km = 100 m.
work done = (Mg + Mw+ Mp) x gx 100 m.

(ME +Mw+Mpx 100mx g
fxlJg

but work done = f x fuel energy = f x m¢ X Jg — mg=
Work done = 3R AT x Ny where Nw = # moles water = mw/18 gm since HpO has
molecular weight 18,

_ (18 gm)(work done) _ 18 gm x (Mg + Mw+ Mp) x g x 100 m
my =18 gm X Nw =——3R(100 K) 3R x 100 K
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