PHYSICS DEPARTMENT COMPREHENSIVE EXAMINATION #60
January 13, 1990
Comprehensive Examination for Winter 1990

PART 1

General Instructions

This Comprehensive Examination for Winter 1990 (#60) consists of eight problems
of equal weight (20 points each). It has two parts. The first part (Problems 1-4) is handed
out at 9:00 am (duration: 3 hours) and the second part (Problems 5-8) at 1:00 pm (duration
3 hours).

Work carefully, indicate your reasoning briefly, and display your work clearly. Even
if you do not complete a problem, it might be possible to obtain partial credit--especially
if your understanding is manifest. Use no scratch paper; do all work in the bluebooks, use
one bluebook per problem, and be certain that your assigned student letter (but not your
name) is on every booklet.

If something is omitted from the statement of the problem or you feel there are
ambiguities, please get up and ask your question quietly and privately, so as not to disturb
the others. Put all matérials, books, and papers, except the exam and bluebook, on the
floor. Please return the bluebooks at the end of the exam.

Use the last pages of your bluebooks for "scratch” work separated by at least ofe

empty page from ybur solutions. "Scratch" work will not be graded.



Physics Department Comprehensive Exam #60, January 13, 1990
PART I

Problem ﬁl

An object of mass M i 1s= 5. fastened to theé ‘end of a rope of length ¢ and mass m and hangs
over the edge of a table’as m(hcated schematically in the figure. The table is smooth and
the rope is ﬂemble

m
LR y

(a) Choose a convement coordmate :
and obtam the equa’uon of motion* [

(b)  Initially all of the rope is onthe
table and the systém is at rest. "How M
long does it take for the end of the"
-Tope to reach the edge of the table?

A,

3

Probiem 2 |

The heat capacity of a solid is C = oT°, where ¢ is a copstant. This solid is the low-
temperature reservoir of a reversible refrigerator. The h1gh temperature reservoir is at
room temperature The solid is cooled from room” temperature to absolute Zero
(appromately) ¢ =
Find an: expressmn for the amount of work reqmred to cool this sohd
(b) What is the decrease in entropy‘of the solid?
(c)  What is the decrease in internal energy of the solid? -
(d) What are the increases in entropy and mternal energy of the h1gh temperature
reservoir?

Problem #3 AT
A spinless particle of mass M moves nonrelativistically in one dimension i in the potential -
V() = V, where V, is a constant, for -a < x < a, and V(x). = oo ¢lsewhere.

(a) 'I'he enErgy of the particle is measured. What is the Ieast value that may be found?

(b)  Suppose that the measurement of energy determines that the particle is in the
ground state. Then its position is measured. What is the probability that the particle
will be found in the fo]lowmg regions: (i) x > a/2‘? (11) x >a?.

{c) Suppose that after ’the particle has been detenmned to be in the greund state, its
momentum is measured instead of its position. 'What values may be found for the
momentum, and with what probabﬂmes‘?
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Problem #4

A partxcular electrical transformer consists of a very.long solenoid of radius R having N
turns per unit length and a single turn coaxial secondary winding of radius 2R, as indicated
in the figure. The secondary loop is closed and has a total resistance r. The diameter of
the secondary wire is D, as shown. A sinusoidal current of frequency » is established in the
long solenoid. The magmtude of v is small enough that equations from magnetostatics can
be used. In other words, radiative effects can be ignored. In addmon, assume the

secondary to be purely resmtxve ie., Ignore its sélf inductance. .- .. .
.s.wh o
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(a) Determine the direction of the Poynting vector at the surface of the wire of the
secondary turn. Discuss your resuits.

(b)  Assume R >> D, and calculate the total magnetic field along the axis of the
solenoid. ._



PHYSICS DEPARTMENT COMPREHENSIVE EXAMINATION #60

January 13, 1990

Comprehensive Examination for Winter 1990

PART II

General Instructions

This Comprehensive Examination for Winter 1990 (#60) consists of eight problems
of equal weight (20 points each). It has two parts. The first part (Proi)lems 1-4) is handed
out at 9:00 am (duration: 3 hours) and the second part (Problems 5-8) at 1:00 pm (duration
3 hours). |

Work carefully, indicate your reasoning briefly, and display your work clearly. Even
if you do not complete a problem, it might be possible to obtain partial credit--especially
if your understanding is manifest. Use no scratch paper; do all work in the bluebooks,
use one bluebook per problem, and be certain that your assigned student letter (but not
your name) is on every booklet.

If something is omitted from the statement of the problem or you feel there are
ambiguities, please get up and ask your question quiétly and privately, so as not to disturb
the others. Put all materials, baoks, and papers, except the exam and bluebook, on the
floor. Please return the bluebooks at the end of the exam.

Use the last pages of your bluebooks for "scratch" work separated by at least one

empty page from your solutions. "Scratch" work will not be graded.




Physics Department Comprehensive Exam #60, January 13, 1990
PART 11
Problem #5

Coexistence of a gas and a solid: The Helmholz free energy of a gas is given by
- N
F-—NkBT{ln [m]-l},

The same material as a solid has a partition function |

where C is constant.

Z =[1- MW/KTpN

This gas and solid are in equilibrium. Find the vapor pressure curve for this model. In
other words, find the relation between the vapor pressure and the temperature.

Problem #6
A point particle slides frictionlessly down a sphere, starting from rest at the top. Using the

Lagrange undetermined multiplier method, obtain the equations of motion and the radial
constraint force. In addition, find the polar angle at which the particle leaves the sphere.

Problem #7

In spherical coordinates, a distribution of free charge is described by

~2rfr
£y() =q[63(r) o :l

Tl"l'o

This free charge is imbedded in an inhomogeneous, isotropic, linear dielectric of
permittivity «(r). '

(a) Determine the electric field everywhere.

(b)  Calculate the distribution of bound charge for two cases:
(i)  The permittivity, ¢, is constant.
(i)  The permittivity is not constant.

Instead,

€ =51 + x4€™*), where x5 <1,



 Problem #8

A spin-1/2 particle of mass m moves non-relativistically in three dimensions in a potential
given by

2
Vo= S
R}

where R is the particle’s position, and e is a real constant.

(2)
(b)

(d)

What are the energy and degeneracy of the ground state and the first excited state?

At time t = -1 second, the energy of the particle is measured and is found to be in
the first excited state. Afterwards, at time t = 0, the projection of the particle’s total
angular momentum is measured to have its maximum possible value along the z axis.
Then, starting at t = 0, the following time-dependent external potential is applied:

SH(t) = G(t) %—5

where P and § are the particle’s momentum and spin respectively, and G(t) is given
by G(t) = G, t e for t > 0 where 4 and G, are both very small constants. At the
end of this experiment, the particle’s orbital angular momentum L* and its total
angular momentum J* are measured. What values may be found?

Find an approximate expression for the probability that the particle is in an excited
state after a long time t >> 1/y. You need not evaluate the radial integrals.

Explain the conditions for your answer to part (c) to be valid: Compared to what
quantity G,,, should G, be small, G, << G,,, ? Compared to what quantity <.,
should v be small, v << 4, ?
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