SSO Seminar
Wednesday, March 9, 2016 - 16:00 to 17:00
Weniger 304
Event Speaker: 
Lee Aspitarte, Jihan Kim, and Garrett Potter
Local Contact: 
Yun-Shik Lee

Photocurrent Generation Efficiency in Carbon Nanotube pn Junctions

Lee Aspitarte

 Carrier multiplication effects can enhance the quantum efficiency of photovoltaic devices. For example, quantum dot solar cells have demonstrated photon-to-electron conversion efficiencies greater than 100% when photon energies exceed twice the band gap. Carbon nanotube photodiodes exhibit carrier multiplication effects (Gabor et al, Science 2009), but the quantum efficiency of such photodiodes has not previously been characterized. We have reproduced the carrier multiplication phenomena in individual CNT pn junctions and investigated the conditions under which it occurs. We present early results quantifying the internal quantum efficiency of the process.


Vector Encoding in Biochemical Networks

Garrett Potter

 Encoding of environmental cues via biochemical signaling pathways is of vital importance in the transmission of information for cells in a network. The current literature assumes a single cell state is used to encode information, however, recent research suggests the optimal strategy utilizes a vector of cell states sampled at various time points. To elucidate the optimal sampling strategy for vector encoding, we take an information theoretic approach and determine the mutual information of the calcium signaling dynamics obtained from fibroblast cells perturbed with different concentrations of ATP. Specifically, we analyze the sampling strategies under the cases of fixed and non-fixed vector dimension as well as the efficiency of these strategies.

Our results show that sampling with greater frequency is optimal in the case of non-fixed vector dimension but that, in general, a lower sampling frequency is best from both a fixed vector dimension and efficiency standpoint. Further, we find the use of a simple modified Ornstein-Uhlenbeck process as a model qualitatively captures many of our experimental results suggesting that sampling in biochemical networks is based on a few basic components.


Dynamics of Cancer Cells Near Collagen Fiber Chains
Jihan Kim

Cell migration is an integrated process that is important in life. Migration is essential for embryonic development as well as homeostatic processes such as wound healing and immune responses. When cell migrates through connective extracellular matrix (ECM), it applies cellular traction force to ECM and senses the rigidity of their local environment. We used human breast cancer cell (MDA-MB-231) which is highly invasive and applies strong traction force to ECM. As cancer cell applies traction force to type I collage-based ECM, it deforms collagen fibers near the surface. Patterns of deforming collagen fibers are significantly different with pairs of cancer cells compared to a single cancer cell.  While a pair of cancer cells within 60 um creates aligned collagen fiber chains between them permanently, a single cancer cell does not form any fiber chains. In this experiment we measured a cellular response and an interaction between a pair of cells through the chain. Finally, we analyzed correlation of directions between cancer cell migration and the collagen chain alignment.