The physics major will teach all students core content in classical mechanics, quantum mechanics, electromagnetism, and thermal physics. We also expect students to choose from a few more advanced topics. The program learning outcomes do not enumerate the (many) specific content learning outcomes of all those courses, but instead summarizes the cross-cutting learning outcomes that are not the *specific* content of any one class, but instead are program outcomes intended to be learned through many of our courses.

*Problem Solving **– Physics majors and minors will be able to*

- Organize and carry out solutions to long, complex physics problems.
- Decide on strategies to be used and assumptions that need to be made.
- Determine what constitutes sufficient evidence for a conclusion.
- Use both algebraic and geometric approaches in problem-solving.
- Computationally model the behavior of physical systems.
- Troubleshoot difficulties encountered in experiments or computations.

*Sense Making** **– Physics majors and minors will be able to*

- Translate physical descriptions into mathematical equations, and conversely, explain the physical meaning of mathematical results.
- Examine intermediate results or other quantities that could be used to ensure a solution is physically reasonable.
- Identify what they don’t understand, and ask specific questions in order to gain understanding.
- Articulate where they experience difficulty; and take actions to move beyond that difficulty.

** **

*Communication** **– Physics majors will be able to*

- Write effectively using professional norms.
- Present work verbally using professional norms.
- Use graphs and diagrams to convey results.
- Write clear physical and mathematical arguments including effective use of equations.
- Collaborate with other students.

** **

*Experiment *

- Design an experiment to measure a given physical quantity.
- Make measurements on physical systems.
- Estimate sources of error in a measurement.
- Interpret measurements, taking into account the limitations of the measurements and the limitations of models.

* *