Practice Quizzes
may differ from actual quizzes given in class

Quiz 1: Power series Write down the first two non-zero terms in the power
expansion of the following functions.

1. \(\frac{1}{1 - x} \)

2. \(\log(1 + x) \)

3. \(\cos(x) \)

4. \(\sin(x) \)

Quiz 2: Evaluating partial derivatives Evaluate the following partial deriva-
tives.

1. Taking \(k_B \) to be a constant:

 \[F = k_B T(n \ln n - n) \]

 Find \(\left(\frac{\partial F}{\partial n} \right)_T \)

2.

 \[U = x^2 + y^2 - 2xy \]

 Find \(\left(\frac{\partial U}{\partial x} \right)_y \)

3. Taking \(k_B \) to be a constant:

 \[Z = e^{-\frac{x^2 + y^2}{2kBT}} \]

 Find \(\left(\frac{\partial Z}{\partial x} \right)_{y,T} \)

4. Taking \(N, k_B, b \) and \(a \) to be constant, and given

 \[G = -Nk_B T \ln(V - Nb) + \frac{N^2 k_B T b}{V - Nb} - \frac{2aN^2}{V} \]

 find \(\left(\frac{\partial G}{\partial V} \right)_T \)
Quiz 3: Total differentials Evaluate the total differential of each the following functions.

1. Taking k_B to be a constant:
 \[F = k_B T(n \ln n - n) \]

2. \[U = x^2 + y^2 - 2xy \]

3. Taking k_B to be a constant:
 \[Z = e^{-\frac{x^2+y^2}{k_B}} \]

4. Taking N, k_B, b and a to be constant:
 \[G = -Nk_B T \ln(V - N) + \frac{N^2 k_B T b}{V - N} - \frac{2aN^2}{V} \]

Quiz 4: Changing variables Given the definitions below, evaluate the requested partial derivative.

1. Taking k_B to be a constant:
 \[F = k_B T(n \ln n - n) \]
 \[n = \frac{N}{V} \]
 Find \(\left(\frac{\partial F}{\partial V} \right)_T \)

2. \[U = z^2 + x^2 + y^2 - 2xy - 2xz \]
 \[z = \ln(y - x) + xy \]
 Find \(\left(\frac{\partial U}{\partial z} \right)_y \)

3. \[z = e^{x^2 + y^2} \]
 \[x = \sin(t + y) \]
 Find \(\left(\frac{\partial z}{\partial x} \right)_t \)
Quiz 5: Limiting cases For each of the following expressions, find the limiting case when $x \ll 1$.

1. $\tan x$

2. $\frac{\sin(x^2)}{\sin x}$

3. $\frac{\sin x}{x}$

4. $\ln(1 + x^2)$

Quiz 6: Finding entropy Given the following expressions for dQ and T for a quasistatic process, solve for the change in entropy from $t = 0$ to $t = t_f$, where t is time. You may take any other variables used to be constant (i.e. independent of time).

1. $dQ = P\,dt$, $T = T_0 + Kt$

2. $dQ = P\,dt$, $T = T_0$

3. $dQ = -Pe^{\frac{t}{T_0}}\,dt$, $T = Ke^{-\frac{1}{TV}}$

Quiz 7: Heat and work For each of the following processes, solve for the heat or work done.

1. A system expands from volume V_0 to volume V_f. During this process the pressure is given by

$$p = \frac{Nk_BT}{V}$$

where k_BT and N are constant. How much work does the system do on its environment?

2. A system is heated from initial entropy S_0 to final entropy S_f. During this process the temperature given by

$$T = T_0 + \frac{S - S_0}{C_V}$$

where T_0 and C_V are constants. How much energy is transferred into the system by heating during this process?
3. A system expands from volume V_0 to volume V_f. During this process the pressure is given by

$$p = p_0 \left(\frac{V_0}{V}\right)^\gamma$$

where p_0 is the initial pressure. How much work does the system do on its environment?

Quiz 8: First Law

1. You heat an insulated piston with a resistor. You run 5 A through the resistor at 10 V for a total of 10 seconds. The pressure is fixed at 1 Pa (which is one N/m²). If the system expands by 0.1 cubic meter, what is the change in internal energy of the system?

2. Consider an insulated cylinder full of an ideal gas, whose internal energy is given by

$$U = \frac{3}{2} N k_B T$$

What happens to the temperature of the gas when I compress the insulated piston? Why?

Quiz 9: Integrating work Given the equations of state below, what is the amount of work done when a system isothermally expands from initial volume V_0 to final volume $2V_0$?

1. $$p = \frac{N k_B T}{V}$$

2. $$p = p_0 e^{-\frac{p_0 V}{N k_B T}}$$

Quiz 10: Heat revisited
The plot above shows two paths from an initial state described by S_0 and T_0 to a final state given by S_f and T_f. Consider the heat added to the system in the first path Q_A and the heat added to the system in the second path Q_B. Which of these is greater, or are they equal? Which are positive and which are negative?

Quiz 11: Summation notation Evaluate the following sums S:

1. $$S = \sum_{i=0}^{3} i$$

2. $$S = \sum_{i=1}^{3} i^2$$

3. $$S = \sum_{i=0}^{2} i!$$

4. $$S = \sum_{i=0}^{2} \sum_{j=0}^{2} i^2 j^2$$

Quiz 12: Efficiency

1. The temperature of the surface of the sun is around 6000 K. Room temperature is around 300 K. What is the upper bound on the efficiency of a photovoltaic cell converting light from the sun into electric power, if the cell operates at room temperature? How does this compare with the efficiency of actual solar cells? (very roughly)

2. If an ideal heat engine operates between a hot heat bath at T_H and a cold heat bath at T_C, what is the change in entropy of the hot bath when the engine does W work in one cycle?

3. What is the change in entropy of the cold bath?

4. What is the change in entropy of the engine itself?

Quiz 13: Entropy change For the following processes, in which the system is designated in *italics*:

- Is the change in entropy of the system positive, negative, zero or impossible to determine?
• Is the change of entropy of the surroundings positive, negative, zero, or impossible to determine?

• Is the change in entropy of system plus surroundings positive, negative, zero, or impossible to determine?

For each question, give a brief explanation. Answers without explanation will not receive credit.

1. A hot potato is left on the counter top.
2. A sealed steel piston of air is slowly compressed.

Quiz 14: Internal energy change For the following processes, in which the system is designated in italics, is the change in the internal energy of the system positive, negative, zero or impossible to determine? Give a brief explanation. Answers without explanation will not receive credit.

1. A hot potato is left on the counter top.
2. A sealed steel piston of air is slowly compressed.
3. A sealed, insulated piston of air is slowly compressed.