Math

Total differentials

\[dA = \left(\frac{\partial A}{\partial B} \right)_C dB + \left(\frac{\partial A}{\partial C} \right)_B dC \]

You can:

1. Do algebra
2. Interpret coefficients as partial derivatives
3. Integrate

Mixed partial derivatives

\[\left(\frac{\partial \left(\frac{\partial A}{\partial B} \right)_C}{\partial C} \right)_B = \left(\frac{\partial \left(\frac{\partial A}{\partial C} \right)_B}{\partial B} \right)_C \]

Chain rules

\[\left(\frac{\partial A}{\partial B} \right)_C = \frac{1}{\left(\frac{\partial B}{\partial A} \right)_C} \]
\[\left(\frac{\partial A}{\partial B} \right)_D = \left(\frac{\partial A}{\partial C} \right)_D \left(\frac{\partial C}{\partial B} \right)_D \]
\[\left(\frac{\partial A}{\partial B} \right)_C = \left(\frac{\partial A}{\partial C} \right)_B \left(\frac{\partial B}{\partial C} \right)_A \]

Thermodynamics

Entropy

\[\Delta S = \int \frac{dQ_{\text{quasistatic}}}{T} \]
\[dQ =TdS \]
\[C_\alpha = T \left(\frac{\partial S}{\partial T} \right)_\alpha \]

First Law

\[\Delta U = Q + W \]
\[dU =dQ +dW \]
\[dU = TdS -pdV \]

Second Law

\[\Delta S_{\text{system}} + \Delta S_{\text{surrondings}} \geq 0 \]

Legendre transforms

You can add or subtract from \(U \) products of conjugate variables to find new thermodynamic potentials that are convenient when \(T \) or \(p \) are held fixed or controlled.

Maxwell relations

From any thermodynamic potential you can use the equality of mixed partial derivatives to create a relationship between two different partial derivatives.

Statistical mechanics

\[P_i = \frac{e^{-\beta E_i}}{Z} \]
\[Z = \sum_{i}^{\text{all states}} e^{-\beta E_i} \]
\[\beta = \frac{1}{k_B T} \]
\[F = -k_B T \ln Z \]
\[U = \sum_{i} P_i E_i \]
\[S = -k_B \sum_{i} P_i \ln P_i \]