The Algebra of Complex Numbers

Complex numbers are algebraic expressions containing the factor $i \equiv \sqrt{-1}$. A complex number z consists of a "real" part, $\operatorname{Re} z \equiv x$, and an "imaginary" part, $\operatorname{Im} z \equiv y$, that is,

$$
z=\operatorname{Re} z+i \operatorname{lm} z=x+i y
$$

If $\operatorname{Im} z=0$, then $z=x$ is a "real number". If $\operatorname{Re} z=0$, then $z=i y$ is said to be "purely imaginary." The real and imaginary parts, x and y, are themselves real numbers.

Addition and subtraction: $\quad z_{1} \pm z_{2}=\left(x_{1} \pm x_{2}\right)+i\left(y_{1} \pm y_{2}\right)$
Multiplication: $\quad z_{1} \times z_{2}=\left(x_{1}+i y_{1}\right) \times\left(x_{2}+i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right)$

$$
\text { Remember! } i^{2}=-1
$$

Division: $\quad \frac{z_{1}}{z_{2}}=\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}}=\frac{\left(x_{1} x_{2}+y_{1} y_{2}\right)+i\left(x_{2} y_{1}-x_{1} y_{2}\right)}{x_{2}^{2}+y_{2}^{2}}$

Modulus and Argument:

The modulus of a complex number is defined by $|z|=\sqrt{x^{2}+y^{2}}$. (Sometimes called the "absolute value.")

The argument is $\arg z=\tan ^{-1}\left(\frac{y}{x}\right)$.

Complex Conjugate:

The complex conjugate is defined by $z^{*}=x-i y$. The following rules apply:

$$
\begin{aligned}
& z z^{*}=|z|^{2} \\
& \left(z_{1}+z_{2}\right)^{*}=z_{1}^{*}+z_{2}^{*} \\
& \left(z_{1} z_{2}\right)^{*}=z_{1}^{*} z_{2}^{*} \\
& \left(\frac{z_{1}}{z_{2}}\right)^{*}=\frac{z_{1}^{*}}{z_{2}^{*}}
\end{aligned}
$$

Some useful relations involving complex conjugates:

$$
\begin{aligned}
& \left(z^{*}\right)^{*}=z \\
& z+z^{*}=2 \operatorname{Re} z=2 x \\
& z-z^{*}=2 i \operatorname{lm} z=2 i y \\
& \frac{z}{z^{*}}=\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)+i\left(\frac{2 x y}{x^{2}+y^{2}}\right)
\end{aligned}
$$

Polar representation of complex numbers:

$$
z=r e^{i \theta} \text { with } r \text { and } \theta \text { real. } \quad r=|z|=\sqrt{x^{2}+y^{2}} \text { and } \theta=\arg z=\tan ^{-1}\left(\frac{y}{x}\right)
$$

Euler relations: $e^{ \pm i \theta}=\cos \theta \pm i \sin \theta$.

$$
e^{2 n \pi i}=1 \quad e^{i \pi / 2}=i \quad e^{i \pi}=-1 \quad e^{i 3 \pi / 2}=-i
$$

$$
e^{i \theta}+e^{-i \theta}=2 \cos \theta \quad e^{i \theta}-e^{-i \theta}=2 i \sin \theta
$$

Argand Diagram:

A complex number $z=x+i y$ is represented as a point in the plane $\operatorname{Im} z-\operatorname{Re} z$ or, equivalently, as a vector with components x and y. The length of the vector is the modulus $r=|z|$, and the direction is determined by the angle $\theta=\arg z$.

