# The Algebra of Complex Numbers

Complex numbers are algebraic expressions containing the factor  $i \equiv \sqrt{-1}$ . A complex number z consists of a "real" part, Re  $z \equiv x$ , and an "imaginary" part, Im  $z \equiv y$ , that is,

$$z = \text{Re } z + i \text{Im } z = x + iy$$
.

If Im z = 0, then z = x is a "real number". If Re z = 0, then z = iy is said to be "purely imaginary." The real and imaginary parts, x and y, are themselves real numbers.

Addition and subtraction:  $z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)$ 

**<u>Multiplication</u>**:  $z_1 \times z_2 = (x_1 + iy_1) \times (x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$ 

Remember!  $i^2 = -1$ .

<u>Division</u>:  $\frac{z_1}{z_2} = \frac{x_1 + iy_1}{x_2 + iy_2} = \frac{(x_1x_2 + y_1y_2) + i(x_2y_1 - x_1y_2)}{x_2^2 + y_2^2}$ 

# **Modulus and Argument:**

The **modulus** of a complex number is defined by  $|z| = \sqrt{x^2 + y^2}$ . (Sometimes called the "absolute value.")

The **argument** is  $\arg z = \tan^{-1} \left( \frac{y}{x} \right)$ .

# **Complex Conjugate:**

The **complex conjugate** is defined by  $z^* = x - iy$ . The following rules apply:

$$ZZ^* = |Z|^2$$

$$(z_1 + z_2)^* = z_1^* + z_2^*$$

$$(z_1 z_2)^* = z_1^* z_2^*$$

$$\left(\frac{z_1}{z_2}\right)^* = \frac{z_1^*}{z_2^*}$$

Some useful relations involving complex conjugates:

$$(z^*)^* = z$$

$$z + z^* = 2 \operatorname{Re} z = 2x$$

$$z - z^* = 2i \operatorname{Im} z = 2iy$$

$$\frac{z}{z^*} = \left(\frac{x^2 - y^2}{x^2 + y^2}\right) + i\left(\frac{2xy}{x^2 + y^2}\right)$$

#### Polar representation of complex numbers:

$$z = re^{i\theta}$$
 with  $r$  and  $\theta$  real.  $r = |z| = \sqrt{x^2 + y^2}$  and  $\theta = \arg z = \tan^{-1} \left(\frac{y}{x}\right)$ .

Euler relations: 
$$e^{\pm i\theta} = \cos\theta \pm i \sin\theta$$
.  
 $e^{2n\pi i} = 1$   $e^{i\pi/2} = i$   $e^{i\pi} = -1$   $e^{i3\pi/2} = -i$   
 $e^{i\theta} + e^{-i\theta} = 2\cos\theta$   $e^{i\theta} - e^{-i\theta} = 2i\sin\theta$ 

### **Argand Diagram:**

A complex number z = x + iy is represented as a point in the plane Im z - Re z or, equivalently, as a vector with components x and y. The length of the vector is the modulus r = |z|, and the direction is determined by the angle  $\theta = \arg z$ .

