Recall

area \(\propto \) \(X \) \(\rightarrow \) slope
area \(\propto \) \(V \) \(\rightarrow \) slope

How about the other way?

\((V \rightarrow x)? \) look @ \(\vec{V}_x = \frac{\Delta x}{\Delta t} \)

\[\Delta x = \vec{V}_x \Delta t \]

\[\text{Area under } V(t) \text{ curve} \]

\[\cdot \Delta x \text{ is accumulative area under } V(t) \]

\((a \rightarrow v)? \) look @ \(\vec{a}_x = \frac{\Delta V_x}{\Delta t} \Rightarrow \Delta V_x = \vec{a}_x \Delta t \)

\[\cdot \Delta V_x \text{ is accumulative area under } a(t) \text{ curve} \]

ex. Drag racing car \(a_x(t) = \text{const.} = 15 \text{ m/s}^2 \) \(\Rightarrow \)
\(V(t) = 0 \)
\(V(t=0) = 0 \)
\(X(t=0) = 0 \)

\[\Delta x = V_x \Delta t + \frac{1}{2} a_t \Delta t^2 \]

\[\text{quad. form of } \]

\[\text{linear form of } y = mx + b \]

\[V_f = V_i + \vec{a} \Delta t \]
Exercise

I.C. \(V(t=0) = 0 \)
\(X(t=0) = 0 \)

If \(a = \text{const.} \), \(V \) is linear, \(X \) is quadratic

- Speeding up (\(V \) and \(a \) in same direction)
 - \(X(t) \) \(\uparrow \)
 - \(V(t), a(t) \)
 - \(t \)

- Slowing down (\(V \) and \(a \) in opposite directions)
 - \(X(t) \) \(\uparrow \)
 - \(V(t), a(t) \)
 - \(t \)

- \(V(t), a(t) \)

- \(V(t), a(t) \)

- \(V(t), a(t) \)