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has the property that, whereas in most of space if we normalize  to one
particle per unit volume, there exists a volume in which it diverges as (L/a)®.
Moreover, if the proportion of localized states is significant (say a finite
fraction 5 of the whole), then in any volume &3/n, if we pick the right energy,
we should find that a solution of the Schrddinger equation exists which
decays exponentially to zero and yet, when ||* is integrated over all space,
the integral is comparable with that within a few multiples of £ from the
centre of the localized region.

While we have no formal proof that such states cannot exist, it seems so
improbable as to raise doubts about the possibility of coexistence.

3.5. Hopping conduction

If the Fermi energy Ej lies below the mobility edge E., we have seen that
conduction may be of two kinds.

1. By excitation to the mobility edge. We may then give o, in eqn (3.14)
the value

0o =~ 0.03e*/hL;.

The inelastic diffusion length may then be the result of collisions with
phonons, or Auger processes in which an electron loses energy to another
which has energy below Eg.

2. By thermally activated hopping, if N(Eg) is finite. This is a process in
which an electron in an occupied state with energy below Eg receives energy
from a phonon, which enables it to move to a nearby state above Eg. A
process of this kind was first described by Miller and Abrahams (1960) as
an explanation of impurity conduction in doped and compensated semi-
conductors (Chapter 4). In this work, the electron was supposed always to
move to the nearest empty centre. Their analysis resulted in an expression
for the conductivity

o = 05 exp(—es/kgT).
&5 is expected to be of the form
g3 ~ 1/N(Ep)a’

where a is the distance between nearest neighbours. This is discussed further
in Chapter 4.

Mott (1968) first pointed out that at low temperatures the most frequent
hopping process would not be to a nearest neighbour. The argument in its
simplest form is the following, Within a range R of a given site the density
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of states per unijt €nergy range is, near the Fermi energy,
(4m/3)R3N(Ep).

Thus for the hopping process through a distance R with lowest activation
energy, this energy AE wilj be the reciprocal of this,

AE = 1/(4/3)R3N(E,).

Thus, so far as the activation energy is concerned, the further the electron
hops the smaller will be AE. But hopping over a large distance involves
tunnelling and the probability will contain a factor

€Xp(—2«R)

where 1/« is the decay length of the localized wave function. So there will
be an optimum hopping distance R, for which

exp(—2uR) exp(—AE/kyT)

is 2 maximum, This will occur when

2aR + 1/{(47:/3)R3N(E)kBT} (3.22)
has its minimum value, that is when
R = {I/SnN(E)ockBT}”“ (3.23)

Substituting for R in (3.22), we see that the hopping probability and thys
the conductivity is of the form

A exp(—B/T'/4), (3.24a)
where
1/4 3 1/4
B=2 (i) (L) . (3.24b)
2n) \lkgN(E,)

In two-dimensiona] problems, 1/3 replaces 1/4 (Hamilton 1972).

This form of conduction is called ‘variable-rangc hopping’. On the
experimental side, both in doped crystalline semiconductors and amorphous
materials it has frequently been observed, and the form

o = A exp(— B/T) (3.25)

often represents the behavioyr. Experimentally, however, it is difficult to
determine the value of v,

There is an extensive literature on the value of the constant 4. A review
2iving values for single and tmultiphonon hopping is given by Emin (1975).

For a recent discussion see Sy
(1991).
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