


The adyantages are much less clear for magnetostatics. The integal for d is
already a vector integral:

AQ): #, Jie{, (15.24)

(15.2s)

which is, ofcourse, three integrals. Also, when we take the curl of,{ to get 4 rve
have six derivatives to do and combine by pairs. It is not immediately obviou3
whether in most problems this procedure is really any easier than computing g
directly from

s(r) = + lL!-Zltz4y".+Teoc'J riz

Using the vector potential is often mors difrcult for simple problems for the
following reason. Suppose we are interested oaly in the magnetic field B at one
point, and that the problem has some nice symmetry-say we want the fibld at a
point on the axis of a ring of current. Because of the symmetry, we can €asily get
I by doing the integral of Eq. (15.25). If, however, we wereto find,4 first, we would
have to compute t from deriyatives of l, so we must know what ,4 is ht all points
in the neighborhood of the point of interest. And most of these points ate off the
axis of symmetry, so the integral for ,{ gets complicated. In the iing problem, for
example, we would need to use elliptic integrals. In such problems, I is clearly
not very useful. It is true that in many complex problems it is easier to work with
,{, but it would be hard to argue that this ease of technique would justify making
you learn about one more vector field.

We have introduce d, A ber;ause it does have an important physical significance.
Not only is it related to the energies of currents, as we saw in the last section, but
it is also a "real" physical field in the sense that we described above. In classical
mechanics it is clear that we can write the force on a particle as

F:s@lvXB). (15.26)

so that, given the forces, everything about the motion is determined. In any region
where B : 0 even if ,4 is not zero, such as outside a solenoid, there is no dis-
cernible effect of l. Therefore for a long time it was believed that I was not a
"real" field. It turns out, however, that there are phenomena involving quantum
mechanics which show that the field I is in fact a ,.real,' field in the sense we have
defined it. In the next section we will dhow you how that works.

15-5 The y€ctor pot€ntial and quantum mechanics

There are many changes in what concepts are important when we go from
classical to quantum mechanics. We have already discussed some of them in
Vol. I. In particular, the force concept gradually fades away, while the concepts
of energy and momentum become of paramount jmportanc€. you remember that
instead of particle motions, one deals with probability amplitudes which vary in
space and time. In these amplitudes there are wavelengths related to momenta,
and frequencies related to energies. The momenta and energies, which determine
the phases of wave functions, are therefore the important quantities in quantum
mechanics. Instead of forces, we deal with the way interactions change the wave-
l€ngth of the waves. The idea of a force becomes quite secondarv-if it is there at
all. When people talk about nuclear forces, lor example, what they usually analyze
and work with are the energies of interaction of two nucleons, and not the forc€
between them. Nobody ever differentiates the energy to find out what the force
looks like. In this section we want to describe how the vector and scalar Doten-
tials enter into quantum mechanics. It is, in fact, just because rnomentum and
energy play a central role in quantum mechanics that I and 6 provide the most
direct way of introducing electromagnetic efects into quantum descriptions.

We must review a little how quantum mechanics works. We will consider
again the imaginary experiment described in Chapter 37 of Vol. I. in which elec-
l5-8
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Fig. l5-5. An inlcrfcrence experimenl wilh electron3
(see olrc Chopler 3Z of Vol. t).

trons are diffractrd by two slits. The arrangement is shown again in Fig. 15-5.
Electrons, all of nesrly the same energy, leave the source and travel toward a wall
with two narrow slits. Bcyond the wall is a "backstop" with a movable detector.
The detector measures the rate, which we oall 1, at which electrons arive at a small
region of the backstop at the distance .r from the axis of symmetry. The rate is
proportional to the probability that an.individual electron that leaves the source
will rcach tlat region of the baclstop. This probability has the complicatedlooking
distribution shown in the figure, which we understand as due to the interference of
two amplitudes, one from each slit. The interference of the two amplitudes
depends on their phase difer€nc€. That is, if the amplitudes'are Craio' and C 2eir2,
the phas€ diference 6 : iDr - O2 determines thEir interference pattern lsee Eq.
Q9.12) in Yol. Il. If the distance between the screen and the slits is r. and if the
difference in the path lengths for electrons going 1fu6rgh the two slits is a, as
shown in the figure, then the phase diference of the two waves is given by

(15.27)

As usual, we let I = )r/22, where tr is the wavel€ngth of the space variation ofthe
probability amplitude. For simplicity, we will consider only values of .r much
less than Z; then we can set

and

"ao = i.

x,
7.'t

xd
r/.'

When * is zero, 6 is zero; the waves are in phase, and the probability has a maxi-
mum. When 6 is zr, the waves are out of phase, they interfere destructively, and th€
probability is a minimum. So we get the wavy function for the electron intensity.

Now we would like to state the law that for quantum mechanics reolaces the
force law.F = qu X B, It will be the law that deteimines the behavior ofiuantum-
mechanical particles in an electromagnetic field. Since what happens is determined
by amplitudes, the law must tell us how the magnetic influences affect the ampli-
tudes; we are no longer dealing with the acreleration of a particle. The law is the
following: the phase of the amplitude to arrive via any trajectory is changed by
the presence of a magnetic field by an amount equal to the integral of the vector
potential along the whole trajectory times the charge of the particle over planck's
constant. That is,

Magnetic change i " ob^r" = fr I A.ds.

(15.28)

(r5.29)
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If there were no magnetic field there would be a certain phase of arrival. Ifthere is
a magnetic field anywhere, the phase ofthe arriving wave is increased by the integral
in Eq. (15.29).

Although we will not need to use it for our present discussion, we mention
that the effe.t of an electrostatic neld is to produce a phase change given by the
negative of the time integJlal of the scalar potential 6: 

-

Electric change in phase : -ftJOa,.

These two expressions are correct not only for static fields, but together give the
correct result for an), electromagnetic field, static or dynamic. This is the law that
replaces I : S@ + u X .B). We want now, however, to consider only a stalic
magnetic field.

Suppos€ that there is a magnetic field present in the two-sljt experiment. We
want to ask for the phase ofarrival at the screen ofthe two waves whose paths pass

through the two slits. Their interference determines where the maxima in the
probability will be. We may call iD1 the phase of the wave along trajectory (l).
lf or(8 : 0) is the phase without the magnetic field, then when the field is turned
on the phase will be

ar=@r(B:q+11 e'a' (1s.30). nJ(r,

Similarly, the phase for trajectory (2) is

(15.3r)

The interference of the waves at the detector depends on the phase difference

6:ar(B=0)-oz(B:0)+g I n a'-11 A.ds. (t5.32)' kJot nJe)

The no-field difference we will call 6('8 : 0); it is just the phase difference we

have calculated above in Eq. (15.28). Also, we notice that the two integrals can
be wdtten as oze integral that goes forward along (l) and back along (2); we call
this the closed path (l-2). So we have

&z : &z(B : o> + f; l,,,e.a',

6=6(r: D+#f,,_",u.*. (15.33)

This equation tells us how the electron motion is changed by the magnetic field;
with it we can find the new positions of th€ intensity maxima and minima at the
backstop.

Before we do that, however, we want to raise the following inJeresting and
important point. You remember that the yector potential function has some
arbitrariness. Two different vector potential functions A and A'whose difference
is the gradient of some scalar function v/, both represent the same magnetic field,
since the curl of a gradient is zero. They give, therefore, tbe same classical force
qu X B. If in quantum mechanics the effects depend on the vector potential,
which of the many possible ,4-functions is correct?

The answer is that the same arbitrariness in,4 continues to exist for quantum
mechanics. If in Eq. (15.33) we chznge A to A' : A + v?, the integral on
I becomes r I r

Q e, .a' : Q t.ds t- # v*.ds.-
J lr-2) J <r-2) J lt-2)

The integral of W is around the'c/osed path (l-l), but the integral of the tangential
component of a gradient on a closed path is always zero, by Stokes' theorem.
Therefore both,{ and .d'give the same phase differences and the same quantum-
mechanical interference effects. ln both classical and quantum theory it is only the
curl of / that matters; any choice of the function of I which has the correct curl
gives the correct physics.

15-10
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The same conclusion is evident if we use the results of Section 1,1-1. There
we found that the line integral of .4 around a closed path is the flux of .B through
the path, xhich here is the flux between paths (l) and (2). Equation (15.33) can,
if we wish, be wdtten as

6 : 6(8 : 0) + ; tflux of.8 between (l) and (2)1, (15.34)

where by the flux of B we mean, as usual, the surface integral of the normal com-
ponent of B. The result depends only on B, and therefore only on the curl of l.

Now because we can write th€ result in terms of .8 as well as in terms of .4,
you might be inclined to think that the, holds its own as a "real" field and that
the A can still be thought of as an artificial construction. But the definition of
"real" field that we originally proposed was based on the idea that a "real" field
would not act on a particle from a distance, We can, however, give an example
in which .B is zero-or at least arbitrarily small-at any place where there is some
chance to find the particles, so that it is not possible to think of it acting directly
on them.

You remember that for a long solenoid carrying an electric current there is
a B-field inside but none outside, while there is lots of,4 circulating around outside,
as shown in Fig. 15-6. If we arrange a situation in which electrons are to be found
only outside of the solenoid-only where there is ,4-there will still be an influence
on the motion, accordhg to Eq. (15.33). Classically, that is impossible. Classically,
the force depends only on B; in order to know that the solenoid is carrying current,
the particle must go through it. But quantum-mechanically you can frnd out that
there is a magnetic field inside the solenoid by going arourd it-without eyer going
close to it!

Suppose that we put a very long solenoid of small diameter just behind the
wall and between the two slits, as shown in Fig. l5-7. The diameter of the solenoid
is to be much smaller than the distance d between the two slits. In these circum-
stances, the diffraction of the electrons at the slit gives no appreciable probability
that the electrons will get near the solenoid. What will be the effect on our inter-
ference exoeriment ?
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Fig. l5-6. The mognelic field
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Fig. l5-7. A mognetic field cqn influence the molion of elecirons even lhough
if exists only in regionr where lhere i! qn orbilrorily smoll probobiliiy of finding the
eleclrons.

We compare the situation with and without a current through the solenoid.
If we have no current, we have no B or A and, we get the original pattern of elec-
tron intensity at the backstop. If we turn the current on in the solenoid and build
up a magetic field I inside, then there is an ,{ outside. There is a shift in the
phase difference proportional to the circulation of ,{ outside the solenoid, which will
mean that the pattern of maxima and minima is shifted to a new position. In fact,
since the flux of B inside is a constant for any pair of paths, so also is the circula-
tion ofl. For every arrival point there is the same phase change; this corresponds

l5-11
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to shifting the entire pattern in .x by a constant amount, say x6, that we can easily
calculate. The maximum irtensity will oclur where the phase difference between
the two waves is zero. Using Eq. (15.32) or Eq. (15.33) for 6 and Eq. (15.28) for
6(B : 0), we have

(15.35)

or
L_a*o: - 1I fr lf,ux of3 between (l) and (2). (15.36)

The pattern with the solenoid in place should appearr as shown in Fig. l5-7. At
least, that is the prediction of quantum mechanics.

Precisely this experiment has recently been done. It is a very, very difficult
experiment. Because the wavelengtl of the electrons is so small, the apparatus must
be on a tiny scale to observe the interference. The slits must be very close together,
and that mans that one needs an exceedingly small solenoid. It turns out that in
certain circumstances, iron crystals will grow in the form of very long, microsco-
pically thin filaments called whiskers. When these iron whiskers are magnetized
they are like a tiny solenoid, and there is no field outside except near the ends.
The electron interference experiment was done with such a whisker between two
slits, and the predicted displacement in the pattern of electrons was observed.

In our sense then, the l-field is "real." You may say: "But there was a mag-
netic field." There was, but remember our original idea-that a field is "real" if it is
what must be specified at the posilion of the particle in order to get the motion.
The B-field in the whisker acts at a distance. If we want to describe its inffuence
not as actidn-at-adistance, we must use the vector potential.

This subject has an interesting history. The theory we have described was
known from the beginning of quantum mechanics in I 926. The fact that the vertor
potential appears in the wave equation of quantum mechanics (called the Schr0d-
inger equation) was obvious from the day it was written. That it cannot be replaced
by the magnetic field in any easy way was observed by one man after the other
who tried to do so. This is also clear from our example of electrons moving in a
region where there is no field and being affected nevertheless. But because in
classical mechanics I did not appear to have any direct importance and, further-
more, because it could be changed by adding a gradient, people repeatedly said
that the vector potential had no direct physical significance-that only the magnetic
and electric fields are "right" even in quantum melhanics. It se€ms strange in
retrospect that no one thought of discussing this experiment until 1956, when
Bohm and Aharanov first suggested it and made the whole question crystal clear.
The implication was there all the time, but no one paid attention to it. Thus
many people were rather shocked when the matter was brought up. That's why
someone thought it would be worth while to do the experiment to see that it really
was right, even though quantum mechanics, which had been believed for so many
years, gave an unequivocal answer. It is interesting that something lik€ this can
be around for thirty years but, because of certain prejudices of what is and is not
significant, continues to be ignored.

Now we wish to continue in our analysis a little further. We will show the
conne.tion between the quantum-mechanical formula and the classical formula-
to show why it turns out that if we look at things on a large enough scale it will
look as though the particles are acted on by a force equal to 4u X the curl of l.
To get'classical mechanics from quantum mechanics, we need to consider cases in
which all the wavelengths are very small compared with distances over which ex-
ternal conditions, like fields, vary appreciably. We shall not prove the result in
great generality, but only in a very simple example, to show how it works. Again
we consider the same slit experiment. But instead of putting all the magnetic field
in a very tiny region between the slits, we imagine a magnetic field that extends

I If the field I comes out of the plane of the figure, the flux as we have defined it is
negative and xo is positive.
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Fig. I5-8. The shift of fhc inlcrference pqftern due fo q strip of mognetic fcld.

over a larger regioh behind the slits, as shown in Fig. l5-8. We will take the ideal-
ized case where we have a magnetic field which is uniform in a narrow strip of
width w, considered small as compared with Z. (That can easily be arranged; the
backstop can be put as far out as we want.) In order to calculate the shift in phase,

we must tak€ the two integrals of I along the two trajectories (l) and (2). They
differ, as we have seen, merely by the flux of, between the paths. To our approxi-
mation, the flux is Bwd. The phase difference for the two paths is then

6: 6(r: 0+finwa. (15.37)

We note that, to our approximation, the phase shift is independent of the angle.
So again the effect will be to shift the whole pattern upward by an amount Ax.
Using Eq. (15.28),

LA I.^

^x:;^6:-i[6-(B:0).
Using (15.37) for d - 6(a : 0),

^x: 
L^fr8w. (15.38)

Such a shift is equivalent to deflecting all the trajectories by the small angle c
(see Fig. l5-8), where

(r5.39)

Now classically we would also expect a thin strip of magnetic field to deflect
all trajectories through some small angle, say a', as shown in Fig. 15-9(a). As the
electrons go through the magnetic field, they feel a transverse force 4u X -B which
lasts for'a time w/u. The change in their transverse momentum is just equal to
this impulse' so 

ap. : qwB. (15.40)

The angular deflection [Fig. l5-9(b)] iS equal to the ratio of this transverse mo-
mentum tb the total momentum/. We get that

(o)

( 15.41)

We can compare this result with Eq. (15.39), which gives the same quantity
computed quantum-mechanically. But the connection between classical mechanics
and quantum mechanics is this: A particle of momentump correspondr ro u t]tjl--
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tum ampttude varying with the wavelength i, : ft/p. With this equality, a and c'
are idetrtical; the classical and quantum calculations give the same result.

From the analysis we see how it is that the veator potential which appears in
quantum mechanics in an explicit form produces a classical force which depends

only on its derivatives. In quantum mechanics what matters is the interference
between nearby paths; it always turns out that the effects depend only on how much
the field I changes from point to point, and therefore only on the derivatives of
I and not on the value itself. Nevertheless, the vector potential ,{ (together with
the scalar potential 6 that goes with it) appears to give the most direct description
of the physics. This becomes more and more apparent the more deeply we go

into the quantum theory. In the general theory of quantum electrodynamics, one

takes the vector and scalar potentials as the fundamental quantities in a set

of equations that replace the Maxwell equations: -E and B are slowly disapPear-

ing from the modern expression of physical laws; they are being replaced by ,{
and d.

1S What is tru€ for strtics is false for dynsmics

We are now at the end of our exploration of the subject of static fields. Already
in this chapter we have come perilously close to having to worry about what
happens when fields change with time. We were barely able to avoid it in our
treatment of magnetic energy by taking refuge in a relativistic argument. Even so,

our treatment of the energy problem was somewhat artificial and perhaps even

mysterious, because we ignored the fact that moving coils must, in fact, produce

changing fields. It is now time to take up the treatment of time-varying fields-the
subject of electrodynamics. We will do so in the next chapter. First, however, we

would [ke to emphasize a few points.
Although we began this course with a presentation ofthe complete and correct

equations of electromagnetism, we immediately began to study some incomPlete
pieces-because that was easier. There is a great advantage in starting with the
simpler theory of static fields, and proceeding only later to the more complicated
theory which includes dynamic fields. There is less new material to learn all at
once, and there is time for you to develop your intellectual muscles in preparation
for the bigger task.

But there is the danger in this process that before we get to see the complete
story, the incomplete truths learned on the way may become ingrained and taken
as the whole truth-that what is true and what is only sometimes true will become
confused. So we give in Table l5-l a summary ofthe important formulas we have

covered, separating those which are true in general from those which are true for
statics, but false for dynamics. This summary also shows, in part, where we are
going, since as we treat dynamics we will be developing in detail what we mustjust
state bere without proof.

It may b€ useful to make a few remarks about the table. First, you should
notice that the equations we started with are the trre equations-we have not
misled you there. The electromagnetic force (often called the Lorentz force)
F : q(E + rr X ,) is t/re. It is only Coulomb's law that is false, to be used only
for statics. The four Maxwell equations for,E and .B are also true. The equations
we took for statics are false, of course, because we left ofl all terms with time
derivatives.

Gauss' law, 9 ' E : p/.-o, remains, but the curl of E is not zero in general.

So E cannot always be equated to the gradient of a scalar-the electrostatic po-

tential. We will see that a scalar potential still remains, but it is a time-varying
quantity that must be used together with vector potentials for a complete descrip'
tion of the electric field. Tbe equations governing this new scalar potential are,

necessarily, also new.
We must also give up the idea that.E is zero in conductors. When the fields are

changing, the charges in conductors do not, in general, have time to rearrange
themselves to make the field zero. They are set in motion, but never reach equili-
brium. The only general statement is: electric fields in conductors produce cur-
rtl4


