## PH575 Spring 2019

Lecture \#6:
Linear chain with periodic boundary conditions, $N$->m; $k$-space, Brillouin zones,
(density of states, Bloch functions):
Sutton Ch. 3 pp 44 -> end;
McIntyre Ch 15


## Motivation: Quasi 1-dimensional solids

polyacetylene - highly conducing polymer when doped with $\mathrm{I}_{2}$

polyethylene - used for hip joints


## 1-dimensional solids

Infinite chain of H atoms (doesn't exist in nature, but good model)


Peierls distortion
In practice it often leads to systems
undergoing a metal-to-insulator transition, as an odd electron count for a metallic 1D chain changes into an even count for a chain of dimers.

3-D H solid is
$\mathrm{H}_{2}$ molecules


## 1-dimensional chain of identical atoms <br> 

Known atomic orbitals $|j\rangle$,
( $j$ labels atom; have suppressed the orbital type - there's only one)
Known Hamiltonian $\hat{H}$
Orthogonal states: $\quad\langle i \mid j\rangle=\delta_{i j}=\left\{\begin{array}{l}1 \text { if } i=j \\ 0 \text { if } i \neq j\end{array}\right.$
To find: molecular orbitals $|\Psi\rangle$, and corresponding energies $E$

$$
\hat{H}|\Psi\rangle=E|\Psi\rangle \quad|\Psi\rangle=\sum_{j=1}^{N} c_{j}|j\rangle
$$

## 1-dimensional chain of identical atoms



How many energy levels?


New assumption: nearest neighbor coupling only

$$
\langle i| \hat{H}|j\rangle=\left\{\begin{array}{c}
\alpha \text { if } i=j \\
\beta \text { if } i=j \pm 1 \\
0 \text { otherwise }
\end{array} \quad \hat{H}=\left(\begin{array}{ccccc}
\alpha & \beta & 0 & 0 & 0 \\
\beta & \alpha & \beta & 0 & 0 \\
0 & \beta & \alpha & \beta & 0 \\
0 & 0 & \beta & \alpha & \beta \\
0 & 0 & 0 & \beta & \alpha
\end{array}\right)_{5}\right.
$$

$$
\begin{aligned}
& \text { 1-dimensional chain of identical atoms } \\
& \hat{H}|\Psi\rangle=E|\Psi\rangle \quad|\Psi\rangle=\sum_{j=1}^{N} c_{j}|j\rangle \\
& \sum_{j=1}^{N} c_{j} \hat{H}|j\rangle
\end{aligned}=E \sum_{j=1}^{N} c_{j}|j\rangle \xrightarrow{\text { project onto }\langle p|} \mathrm{C} \begin{aligned}
\sum_{j=1}^{N} c_{j}\langle p| \hat{H}|j\rangle & =E \sum_{j=1}^{N} c_{j}\langle p \mid j\rangle \\
& =E c_{p}
\end{aligned}
$$

This can be written in matrix form, just like the 2-atom case!

## 1-dimensional chain of identical atoms



$$
\begin{gathered}
\sum_{j=1}^{N} c_{j}\langle p| \hat{H}|j\rangle=E c_{p} \\
\left(\begin{array}{ccccc}
\alpha-E & \beta & 0 & 0 & 0 \\
\beta & \alpha-E & \beta & 0 & 0 \\
0 & \beta & \alpha-E & \beta & 0 \\
0 & 0 & \beta & \alpha-E & \beta \\
0 & 0 & 0 & \beta & \alpha-E
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
\cdots \\
c_{j} \\
\cdots \\
c_{N}
\end{array}\right)=0
\end{gathered}
$$

Sutton Eq. 3.5 -> solve by setting determinant $=0$

## 1-dimensional chain of identical atoms


$\left(\begin{array}{ccccc}\alpha-E & \beta & 0 & 0 & 0 \\ \beta & \alpha-E & \beta & 0 & 0 \\ 0 & \beta & \alpha-E & \beta & 0 \\ 0 & 0 & \beta & \alpha-E & \beta \\ 0 & 0 & 0 & \beta & \alpha-E\end{array}\right)\left(\begin{array}{l}c_{1} \\ \cdots \\ c_{j} \\ \cdots \\ c_{N}\end{array}\right)=0$
$N$ coupled equations (except for two ends):

$$
c_{j-1}-\frac{(E-\alpha)}{\beta} c_{j}+c_{j+1}=0
$$

## 1-dimensional chain of identical atoms 

Can we make the problem simpler if N becomes large?
Yes!
If we don't care about the ends (what's a few atoms in $10^{23}$ ?) then we can invoke periodic boundary conditions.

We make an imaginary extra atom " 0 ", and make it identical to "N"

## 1-dimensional chain of identical atoms



Strategy: Guess form of the c coefficients and see if that works
Trick: Imaginary $0^{\text {th }}$ atom coincides with the $N^{\text {th }}$ atom
Periodic boundary conditions Demand $c_{0}=c_{N}$
(The chain remains linear, but it helps to imagine a circle)


## 1-dimensional chain of identical atoms



[^0]$$
c_{j}=A e^{i j \theta}
$$

Why is this reasonable?
What does it mean?
$c_{j}$ is contribution of each atomic orbital - should be same size for each $i$, because of symmetry.

Only way to do this is for each each orbital to have a different phase (which does not change its size), but which can give it an imaginary part!

## 1-dimensional chain of identical atoms



$$
c_{j}=A e^{i j \theta}
$$

$$
c_{0}=c_{N} \Rightarrow A=A e^{i N \theta} \Rightarrow 1=e^{i N \theta}
$$

$$
\Rightarrow \theta=\frac{2 m \pi}{N} \text { where } m=0,1,2 \ldots . N-1 \quad \text { why? }
$$

$$
c_{j}^{(m)}=A e^{i j\left(\frac{2 m \pi}{N}\right)} \quad \begin{aligned}
& \begin{array}{l}
\text { Note TWO counting indices: } \\
j \text { labels atoms, } \\
m \text { labels..what? }
\end{array}
\end{aligned}
$$



| \#cycles | $c_{0}$ | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $m=0$ | $e^{i 0}$ |
|  |  | 1 | 1 | 1 | 1 |
| $m=1$ | $e^{i 0}$ | $e^{i \pi / 2}$ | $e^{i 2 \pi / 2}$ | $e^{i 3 \pi / 2}$ | $e^{i 2 \pi}=e^{i 0}$ |
|  |  | $i$ | -1 | $-i$ | 1 |
| $m=2$ | $e^{i 0}$ | $e^{i \pi}$ | $e^{i 2 \pi}$ | $e^{i 3 \pi}$ | $e^{i 4 \pi}=e^{i 0}$ |
|  |  | -1 | 1 | -1 | 1 |
| $m=3$ | $e^{i 0}$ | $e^{i 3 \pi / 2}$ | $e^{i 6 \pi / 2}$ | $e^{i 9 \pi / 2}$ | $e^{i 6 \pi}=e^{i 0}$ |
|  |  | $-i$ | -1 | $i$ | 1 |
| $m=4$ | $e^{i 0}$ | $e^{i 2 \pi}$ | $e^{i 4 \pi}$ | $e^{i 6 \pi}$ | $e^{i 8 \pi}=e^{i 0}$ |
|  |  | 1 | 1 | 1 | 1 |

aliasing


## 1-dimensional chain of identical atoms



Plug back into:

$$
c_{j-1}^{(m)}-\frac{\left(E^{(m)}-\alpha\right)}{\beta} c_{j}^{(m)}+c_{j+1}^{(m)}=0
$$



## 1-dimensional chain of identical atoms

$$
E^{(m)}=\alpha+2 \beta \cos \left(\frac{2 m \pi}{N}\right)
$$

Unique information can be presented in either of 2 forms. The left hand one is conventional.

$$
m=0, \pm 1, \pm 2 \ldots \pm N / 2 \quad m=0,1,2 \ldots . . N-1
$$




## 1-dimensional chain of identical atoms

Normalize MO to find $A$ :

$$
c_{j}^{(m)}=A e^{i j\left(\frac{2 m \pi}{N}\right)}
$$

Normalization: $\left\langle\Psi^{(m)} \mid \Psi^{(m)}\right\rangle=1$

$$
c_{j}^{(m)}=\frac{1}{\sqrt{N}} e^{i j\left(\frac{2 m \pi}{N}\right)}
$$

$\mathrm{MO}:\left|\Psi^{(m)}\right\rangle=\frac{1}{\sqrt{N}}\left(e^{i\left(\frac{2 m \pi}{N}\right)}|1\rangle+e^{i 2\left(\frac{2 m \pi}{N}\right)}|2\rangle+\ldots+e^{i\left(\frac{2 m \pi}{1}\right)}|N\rangle\right)$

$$
\Psi^{(m)}(x)
$$



## 1-dimensional chain of identical atoms

$$
c_{j}^{(m)}=\frac{1}{\sqrt{N}} e^{i j\left(\frac{2 m \pi}{N}\right)}
$$



- $\operatorname{Re}\left(\mathrm{c}_{\mathrm{j}} \mathrm{j}\right)$
- Im(c_j)

Vertical axis: Re and Im parts of $c_{j}{ }^{(m)}$
Horizontal axis: distance Each number represents an atom.



## $k$-space: a different label for molecular orbitals



$$
k_{1}=\frac{2 \pi}{\lambda_{1}}=\frac{1}{N} \frac{2 \pi}{a}
$$

$$
E^{(m)}=\alpha+2 \beta \cos \left(\frac{2 m \pi}{N}\right)
$$

$$
\downarrow
$$

$$
E(k)=\alpha+2 \beta \cos (k a)
$$

$a$ is lattice spacing;
$N$ is number of atoms Na is length of solid

$$
\begin{aligned}
& m=\# \text { cycles }=\frac{N a}{\lambda_{m}} \\
& k_{m}=\frac{2 \pi}{\lambda_{m}}=\frac{m}{N} \frac{2 \pi}{a}
\end{aligned}
$$

$k_{m}$ is an alternative label. Usually we leave off the subscript $m$.

## $k$-space: info in the first Brillouin zone

All unique information about the MOs is contained in the first "Brillouin zone".

It has width (in m-space) $\Delta \mathrm{m}=\mathrm{N}$
It has width (in k-space) $\Delta \mathrm{k}=2 \mathrm{~m} / \mathrm{a}$
Conventionally, we center it on $k=0$, and then the "edges" are at $k_{\text {BZB }}= \pm \pi / a$
http://home.att.net/~numericana/fame/brillouin.jpg

## $k$-space: a different label for molecular orbitals

Instead of labeling MOs with a number $m$, we designate them by the wavelength of the variation of the charge distribution.

$$
E(k)=\alpha+2 \beta \cos (k a)
$$


$k$ : dimensions of inverse length BZB
$k$ is a discrete index if there are few atoms/orbitals $=>E_{k}$
$k$ is a quasi-continuous index if $N$ is large $=>E(k)$
The set of values of $k$ is called $k$-space or "reciprocal space" If the "real space" lattice spacing a is large (small) then the "reciprocal space" spacing between allowed $k$ values is small (large).



## Summary: 1-D Chain, n-n, PBC



MO $\left|\Psi_{m}\right\rangle=\sum_{j=1}^{N} \frac{1}{\sqrt{N}} e^{i j \frac{2 \pi m}{N}}|j\rangle \quad\left|\Psi_{k}\right\rangle=\sum_{j=1}^{N} \frac{1}{\sqrt{N}} e^{i k k a}|j\rangle$

$$
E^{(m)}=\alpha+2 \beta \cos \left(\frac{2 m \pi}{N}\right) \quad E(k)=\alpha+2 \beta \cos (k a)
$$



## Bloch's theorem in 1-d

We needed a MO that would give periodically varying probability. Bloch's theorem, for a 1-d system of periodicity (lattice spacing) a

$$
\begin{aligned}
& \Psi^{(k)}(x)=e^{i k x} u(x) \quad(u(x) \text { periodic in } a) \\
& \left|\Psi^{(k)}(x)\right|^{2}=\left|\Psi^{(k)}(x+a)\right|^{2}
\end{aligned}
$$



## Bloch waves




[^0]:    * Remember the molecule is LINEAR!
    This ring is just a memory device

