Lecture #5&6
Linear chain with periodic boundary conditions, $N \to \infty$; k-space, Brillouin zones, density of states, (Bloch functions):
Sutton Ch. 3 pp 44 -> end;
McIntyre Ch 15
1-dimensional solids

Infinite chain of H atoms (doesn't exist in nature, but good model)

Peierls distortion
In practice it often leads to systems undergoing a metal-to-insulator transition, as an odd electron count for a metallic 1D chain changes into an even count for a chain of dimers.

3-D H solid is H₂ molecules

voth.hec.utah.edu/solid_hyd.html
Quasi 1-dimensional solids

Polyacetylene - highly conducting polymer when doped with I_2

Polyethylene - used for hip joints
1-dimensional chain of identical atoms

Known atomic orbitals $|j\rangle$,
(j labels atom; have suppressed the orbital type – there's only one)

Known Hamiltonian \hat{H}

Orthogonal states: $\langle i | j \rangle = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$

To find: molecular orbitals $|\Psi\rangle$, and corresponding energies E

$\hat{H} |\Psi\rangle = E |\Psi\rangle$ \quad $|\Psi\rangle = \sum_{j=1}^{N} c_{j} |j\rangle$
1-dimensional chain of identical atoms

\[\hat{H} = \begin{pmatrix} \alpha & \beta & 0 & 0 & 0 \\ \beta & \alpha & \beta & 0 & 0 \\ 0 & \beta & \alpha & \beta & 0 \\ 0 & 0 & \beta & \alpha & \beta \\ 0 & 0 & 0 & \beta & \alpha \end{pmatrix} \]

New assumption: nearest neighbor coupling only

\[\langle i | \hat{H} | j \rangle = \begin{cases} \alpha & \text{if } i = j \\ \beta & \text{if } i = j \pm 1 \\ 0 & \text{otherwise} \end{cases} \]

How many energy levels? a ___________ ___________ ___________ ___________

\[N=2 \quad N=3 \quad N=4 \quad N=\infty \]

How many energy levels?
1-dimensional chain of identical atoms

\[\hat{H} |\Psi\rangle = E |\Psi\rangle \quad |\Psi\rangle = \sum_{j=1}^{N} c_j |j\rangle \]

\[\sum_{j=1}^{N} c_j \hat{H} |j\rangle = E \sum_{j=1}^{N} c_j |j\rangle \]

\[\sum_{j=1}^{N} c_j \langle p | \hat{H} |j\rangle = E \sum_{j=1}^{N} c_j \langle p | j\rangle \]

\[= Ec_p \]

This can be written in matrix form, just like the 2-atom case!
1-dimensional chain of identical atoms

\[\sum_{j=1}^{N} c_j \left< p \left| \hat{H} \right| j \right> = E c_p \]

\[
\begin{pmatrix}
\alpha - E & \beta & 0 & 0 & 0 \\
\beta & \alpha - E & \beta & 0 & 0 \\
0 & \beta & \alpha - E & \beta & 0 \\
0 & 0 & \beta & \alpha - E & \beta \\
0 & 0 & 0 & \beta & \alpha - E \\
\end{pmatrix}
\begin{pmatrix}
c_1 \\
\cdots \\
c_j \\
\cdots \\
\cdots \\
\end{pmatrix}
= 0
\]

\(N \) coupled equations:

\[c_{j-1} - \left(\frac{E - \alpha}{\beta} \right) c_j + c_{j+1} = 0 \]

Sutton Eq. 3.5 -> solve by setting determinant = 0 😞
1-dimensional chain of identical atoms

\[
\begin{pmatrix}
\alpha - E & \beta & 0 & 0 & 0 \\
\beta & \alpha - E & \beta & 0 & 0 \\
0 & \beta & \alpha - E & \beta & 0 \\
0 & 0 & \beta & \alpha - E & \beta \\
0 & 0 & 0 & \beta & \alpha - E
\end{pmatrix}
\begin{pmatrix}
c_1 \\
\cdots \\
c_j \\
\cdots \\
c_N
\end{pmatrix}
= 0
\]

\(N\) coupled equations (except for ends):

\[c_{j-1} - \left(\frac{E - \alpha}{\beta}\right)c_j + c_{j+1} = 0\]
1-dimensional chain of identical atoms

Strategy: Guess form of the c coefficients and see if that works

Trick: Imaginary 0^{th} atom coincides with the N^{th} atom
Demand $c_0 = c_N$

Periodic boundary conditions: useful when details of the surface are unimportant
ring is large enough
1-dimensional ring of identical atoms

Guess: \(c_j = Ae^{ij\theta} \)

Why is this reasonable?
What does it mean?

\[c_0 = c_N \Rightarrow A = Ae^{iN\theta} \Rightarrow 1 = e^{iN\theta} \]

\[\Rightarrow \theta = \frac{2m\pi}{N} \] \text{ where } m = 0, 1, 2, ..., N - 1

Note TWO counting indices:
\(j \) labels atoms,
\(m \) labels...what?
aliasing
1-dimensional ring of identical atoms

Contribution to m^{th} molecular wave function of j^{th} atomic orbital

Plug back into:

$$c_j = Ae^{ij\left(\frac{2m\pi}{N}\right)}$$

$$c_j^{(m)} - \frac{\left(E^{(m)} - \alpha\right)}{\beta}c_j^{(m)} + c_{j+1}^{(m)} = 0$$

$$E^{(m)} = \alpha + 2\beta \cos\left(\frac{2m\pi}{N}\right)$$

Dispersion relation
1-dimensional ring of identical atoms

\[E^{(m)} = \alpha + 2\beta \cos\left(\frac{2m\pi}{N}\right) \]

Unique information can be presented in either of 2 forms. The left hand one is conventional.

\[m = 0, \pm 1, \pm 2 \ldots \pm N/2 \]

\[m = 0, 1, 2 \ldots N-1 \]
1-dimensional ring of identical atoms

Normalize MO to find A:

$$c_j^{(m)} = Ae^{ij \left(\frac{2m\pi}{N}\right)}$$

Normalization:

$$\langle \Psi^{(m)} | \Psi^{(m)} \rangle = 1$$

$$c_j^{(m)} = \frac{1}{\sqrt{N}} e^{ij \left(\frac{2m\pi}{N}\right)}$$

MO:

$$\Psi^{(m)} = \frac{1}{\sqrt{N}} \left(e^{i \left(\frac{2m\pi}{N}\right)} |1\rangle + e^{i2 \left(\frac{2m\pi}{N}\right)} |2\rangle + \ldots + e^{i \left(\frac{2m\pi}{1}\right)} |N\rangle \right)$$

$$\Psi^{(m)}(x)$$
1-dimensional ring of identical atoms

We needed a MO that would give periodically varying probability. Bloch's theorem, for a 1-d system of periodicity (lattice spacing) a

$$|\Psi^{(m)}(x)|^2 = |\Psi^{(m)}(x + a)|^2$$
1-dimensional ring of identical atoms

\[c_j^{(m)} = \frac{1}{\sqrt{N}} e^{i j \left(\frac{2m\pi}{N}\right)} \]

Vertical axis: Re and Im parts of \(c_j^{(m)} \)
Horizontal axis: distance
Each number represents an atom.
\[m = 5 \]

\[m = 0, 10 \]

\[\alpha = 1 \]
\[\beta = -0.3 \]
\[N = 10 \]
k-space: a different label for molecular orbitals

$k_1 = \frac{2\pi}{\lambda_1} = \frac{1}{N} \frac{2\pi}{a}$

$E^{(m)} = \alpha + 2\beta \cos \left(\frac{2m\pi}{N} \right)$

$E(k) = \alpha + 2\beta \cos (ka)$

$m\lambda_m = Na$

$k_m = \frac{2\pi}{\lambda_m} = \frac{m}{N} \frac{2\pi}{a}$

k_m is an alternative label. Usually we leave off the subscript m.

a is lattice spacing; what is λ_m (the wavelength of electron density variation?)
The \(k \) corresponding to the smallest wavelength is called the "Brillouin zone boundary." It marks the edge of the zone of \(k \) values that give unique information.

\[
k_{BZB} = \frac{2\pi}{\lambda_5} = \frac{N}{2} \frac{2\pi}{N a} = \frac{\pi}{a}
\]
k-space: a different label for molecular orbitals

Instead of labeling MOs with a number \(m \), we designate them by the wavelength of the variation of the charge distribution.

\[
E(k) = \alpha + 2\beta \cos(ka)
\]

\(k \): dimensions of inverse length

- \(k \) is a discrete index if there are few atoms/orbitals \(\Rightarrow E_k \)
- \(k \) is a quasi-continuous index if \(N \) is large \(\Rightarrow E(k) \)

The set of values of \(k \) is called **k-space** or “reciprocal space”

If the "real space" lattice spacing \(a \) is large (small) then the "reciprocal space" spacing between allowed \(k \) values is small (large).
We're almost there ... Just add more dimensions and more orbitals
Summary: 1-D Chain, n-n, PBC

\[|\Psi_m\rangle = \sum_{j=1}^{N} \frac{1}{\sqrt{N}} e^{ij \frac{2\pi m}{N}} |j\rangle \quad |\Psi_k\rangle = \sum_{j=1}^{N} \frac{1}{\sqrt{N}} e^{ijka} |j\rangle \]

\[E^{(m)} = \alpha + 2\beta \cos\left(\frac{2m\pi}{N}\right) \quad E(k) = \alpha + 2\beta \cos(ka) \]