PH575 Spring 2019

Lecture \#4 -
Homo- \& heteronuclear diatomic molecule:
Sutton Ch. 2 pp 25-31

$$
\begin{aligned}
& \left\langle n \ell m_{\ell} \mid n \ell m_{\ell}\right\rangle \\
& \sum_{i}|i\rangle\langle i|=1 \\
& \beta=\langle 1| \hat{H}|2\rangle
\end{aligned}
$$

σ bonding molecular orbital

H_{2} : a homonuclear diatomic molecule

2 H atoms, $1 s$ orbitals only

http://wps.prenhall.com

Goal: find molecular orbitals, $|\Psi\rangle$ and their energies, E

$$
\begin{aligned}
& |\Psi\rangle=\langle 1,1 s \mid \Psi\rangle|1,1 s\rangle+\langle 2,1 s \mid \Psi\rangle|2,1 s\rangle \\
& |\Psi\rangle=c_{1}|1,1 s\rangle+c_{2}|2,1 s\rangle
\end{aligned}
$$

$$
\hat{H}|\Psi\rangle=E|\Psi\rangle
$$

1s atomic orbital
$|1,1 s\rangle$

We know these atomic orbitals, and their energies. These are the basis kets.
Assume orthogonal (not quite true, but ok)
$\langle 1,1 s \mid 2,1 s\rangle=0$

Overlap of atomic orbitals on different atoms

A large overlap integral requires spatial overlap, but spatially overlapping orbitals can still have zero overlap if the signs are appropriately arranged. e.g $2 s$ is orthogonal to $2 p$ on same atom.

We want to find molecular orbitals, and their energies, E

$$
\begin{gathered}
\hat{H}|\Psi\rangle=E|\Psi\rangle \\
|\Psi\rangle=c_{1}|1,1 s\rangle+c_{2}|2,1 s\rangle \\
\hat{H}\left[c_{1}|1,1 s\rangle+c_{2}|2,1 s\rangle\right]=E\left[c_{1}|1,1 s\rangle+c_{2}|2,1 s\rangle\right]
\end{gathered}
$$

On-site
Project onto basis ket \#1 matrix
element
$\mathrm{H}_{11}=\mathrm{E}_{0}$
$\begin{array}{l}\begin{array}{l}\text { (assume } \\ \text { known) }\end{array}\end{array}=E[c_{1} \underbrace{\langle 1,1 s \mid 1,1 s\rangle}_{?}\rangle+c_{2} \underbrace{\langle 1,1 s \mid 2,1 s\rangle}_{?}]$

Hopping matrix element
$H_{12}=\beta$
(assume known)

On-site energy: $\langle 1| \hat{H}|1\rangle=\langle 1|-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{1}(r)+V_{2}(r)|1\rangle$

$$
E_{0}=E_{1, \text { atomic }}+\langle 1| V_{2}(r)|1\rangle
$$

On-site energy is approximately the atomic energy, but small correction due to other potential. WF 1 is small where V_{2} is large and vice versa (note: e-e interactions neglected).

Hopping energy:

$$
\begin{aligned}
& \langle 1| \hat{H}|2\rangle=\langle 1|-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{1}(r)+V_{2}(r)|2\rangle \\
& \beta=E_{1, \text { atomic }}\langle 1 \mid 2\rangle+\langle 1| V_{2}(r)|2\rangle \\
& \beta=\langle 1| V_{2}(r)|2\rangle
\end{aligned}
$$

Hopping energy is integral of individual potential and both atomic wave functions. Could have additional contribution if there is $\mathrm{n}-\mathrm{n}$ overlap.

We want to find molecular orbitals, and their energies, E

$$
\begin{aligned}
& \begin{array}{c}
c_{1} E_{0}+c_{2} \beta=E c_{1} \\
c_{1} \beta+c_{2} E_{0}=E c_{2}
\end{array} \quad \text { Project onto basis kets } \\
& \left|\begin{array}{cc}
E_{0}-E & \beta \\
\beta & E_{0}-E
\end{array}\right|=0 \quad \text { Linear algebra }=>\text { quadratic eqn } \\
& \quad \begin{array}{l}
E_{a}=E_{0}-\beta \\
E_{b}=E_{0}+\beta
\end{array} \\
& \beta=\langle 1,1 s| V_{2}(r)|2,1 s\rangle<0
\end{aligned}
$$

For overlapping s orbitals, β is negative. This is because s orbitals are + ve everywhere and $\mathrm{V}_{2}<0$ (attractive potential)

We want to find molecular orbitals, and their energies, E

$$
\begin{array}{ll}
c_{1} E_{0}+c_{2} \beta=E c_{1} & \begin{array}{l}
\text { Now we can find the c's for } \\
\text { each of } E_{b} \text { and } E_{a}, \text { and hence } \\
c_{1} \beta+c_{2} E_{0}=E c_{2}
\end{array} \\
\text { the corresponding } \Psi_{b} \text { and } \Psi_{a} .
\end{array}
$$

H_{2} molecule

constructive combination

H_{2} molecule

Bonding is a quantum mechanical phenomenon that results from the interference of quantum waves!

To view bonding as the "sharing" of electrons, we can show (Sutton p33-31) that an electron oscillates from atom \#1 to atom \#2 at a frequency $2 \beta / h$. How does it overcome the large ionization potential? It tunnels! Again a quantum mechanical phenomenon.

σ bonding with p-orbitals

π bonding with p-orbitals nodal plane

MO diagram for p-orbitals

- H_{2} molecule has 2 atoms and the 2 molecular orbitals are (relatively) close in energy, one higher and one lower than the energy of the atomic orbital
-The hopping term represents tunneling of electrons across the potential barrier between atoms (see Sutton). The faster the tunneling, the stronger the interaction, and the bigger the
$\sigma *$ antibonding molecular orbital

σ bonding molecular orbital splitting.
-The orbitals are bonding (electron density between nuclei tending to draw nuclei together), or antibonding (electron density on opposite sides of nuclei, causing nuclear repulsion)

Heteronuclear diatomic molecule

Atom B Atom A

$$
E_{A}-
$$

$$
|B, s p\rangle \quad|A, s\rangle
$$

$$
\langle B| \hat{H}|B\rangle=E_{B} \quad\langle A| \hat{H}|A\rangle=E_{A}
$$

On-site integrals

$$
\langle A| \hat{H}|B\rangle=\langle B| \hat{H}|A\rangle=\beta \quad \quad|\Psi\rangle=c_{A}|A\rangle+c_{B}|B\rangle
$$

Off-site integral
General form of MO
$\hat{H}|\Psi\rangle=E|\Psi\rangle \quad$ Schrödinger eigenvalue equation

Want to find these molecular orbitals, and their energies, E

$$
\begin{aligned}
& \begin{array}{cc}
c_{A} E_{A}+c_{B} \beta=E c_{A} & \begin{array}{l}
\text { Project onto basis } \\
c_{A} \beta+c_{B} E_{B}=E c_{B}
\end{array} \\
\text { kets }
\end{array} \\
& \left|\begin{array}{cc}
E_{A}-E & \beta \\
\beta & E_{B}-E
\end{array}\right|=0
\end{aligned} \begin{aligned}
& \text { Linear algebra => quadratic eqn }
\end{aligned}
$$

Want to find these molecular orbitals, and their energies, E

$$
\begin{aligned}
& c_{A} E_{A}+c_{B} \beta=E c_{A} \\
& c_{A} \beta+c_{B} E_{B}=E c_{B}
\end{aligned}
$$

Now we can find the c's for each of E_{b} and E_{a}, and hence the corresponding Ψ_{b} and Ψ_{a}.

$$
\begin{aligned}
& \frac{c_{A, a}^{2}}{c_{B, a}^{2}}=\frac{1}{1+2(\Delta / \beta)^{2}-2(\Delta / \beta)\left(1+(\Delta / \beta)^{2}\right)^{1 / 2}} \\
& \frac{c_{A, b}^{2}}{c_{B, b}^{2}}=\frac{1}{1+2(\Delta / \beta)^{2}+2(\Delta / \beta)\left(1+(\Delta / \beta)^{2}\right)^{1 / 2}}
\end{aligned}
$$

$\begin{aligned} \frac{c_{A, a}^{2}}{c_{B, a}^{2}} & =\frac{1}{1+2(\Delta / \beta)^{2}-2(\Delta / \beta)\left(1+(\Delta / \beta)^{2}\right)^{1 / 2}} \\ \frac{c_{A, b}^{2}}{c_{B, b}^{2}} & =\frac{1}{1+2(\Delta / \beta)^{2}+2(\Delta / \beta)\left(1+(\Delta / \beta)^{2}\right)^{1 / 2}}\end{aligned}$

Electronegativity

TABLE 1.3 The Electronegativities of Selected Elements ${ }^{\text {a }}$

IA	IIA	IB	IIB	IIIA	IVA	VA	VIA	VIIA
$\begin{gathered} \mathrm{H} \\ 2.1 \end{gathered}$								
$\begin{gathered} \hline \mathrm{Li} \\ 1.0 \end{gathered}$	$\begin{aligned} & \mathrm{Be} \\ & 1.5 \end{aligned}$			B 2.0	$\begin{gathered} \mathrm{C} \\ 2.5 \end{gathered}$	N 3.0	$\begin{gathered} \mathrm{O} \\ 3.5 \end{gathered}$	F 4.0
$\begin{aligned} & \mathrm{Na} \\ & 0.9 \end{aligned}$	$\begin{gathered} \mathrm{Mg} \\ 1.2 \end{gathered}$			Al 1.5	$\begin{gathered} \hline \mathrm{Si} \\ 1.8 \end{gathered}$	$\begin{gathered} \mathrm{P} \\ 2.1 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 2.5 \end{gathered}$	Cl 3.0
$\begin{gathered} \mathrm{K} \\ 0.8 \end{gathered}$	$\begin{aligned} & \mathrm{Ca} \\ & 1.0 \end{aligned}$							$\begin{gathered} \hline \mathrm{Br} \\ 2.8 \end{gathered}$
increasing electronegativity								I 2.5

${ }^{a}$ Electronegativity values are relative, not absolute. As a result, there are several scales of electrogativities. electronegativities listed here are from the scale devised by Linus Pauling.
the s orbital adds to the lobe of the p orbital

p orbital
has opposite sign tc the s orbital subtracts from the lobe of the p orbital

This commonly shown picture is actually inaccurate. It shows $1 \mathrm{~s}-2 \mathrm{p}$ hybridization. One always sees $2 \mathrm{~s}-2 \mathrm{p}$
hybridization. 2 s electron distribution is different from 1s! http://wps.prenhall.com

HF and HCl

Hydrogen halide		Bond length (A)	Bond strength		
		kcal/mol	kJ/mol		
H-F			0.917	136	571
$\mathrm{H}-\mathrm{Cl}$		1.2746	103	432	
$\mathrm{H}-\mathrm{Br}$		1.4145	87	366	
H-I		1.6090	71	298	

overlap of an s orbital with a $2 s p^{3}$ orbital

Overlap of the bonding sp^{3} hybrid orbital of F and Cl with H in HF and HCl . Overlap of the 1s orbital of hydrogen is better with the smaller $2 \mathrm{sp}^{3}$ hybrid orbital of fluorine than with the larger $3 \mathrm{sp}^{3}$ hybrid orbital of chlorine, resulting in a shorter, stronger bond in HF than in HCl .

