PH575 Spring 2008 5/22/19

PH575 Spring 2014

Lecture #14

Free electron metals: electrical & thermal conductivity Sutton Ch. 8 pp 158-164; Kittel Ch. 6.

independent of \vec{k}

Collisions with thermal vibrations and defects (not stationary ions or other electrons as Drude envisaged) stop the Bloch oscillations and cause electron to settle to a drift velocity.

Average time between collisions $\boldsymbol{\tau}$

$$\left\langle \delta \vec{k} \right\rangle = -\frac{e\vec{\varepsilon}}{\hbar} \tau$$

w3.msi.vxu.se/~pku/ FyB702/Fermi_sphere.htm Electrical conductivity

$$\sigma = \frac{ne^2\tau}{m^*} = ne\left(\frac{e\tau}{m^*}\right)$$

New quantity called MOBILITY (µ) is defined by

$$\sigma \equiv ne\mu$$

$$\mu = \frac{e\tau}{m*}$$

What are units of μ ?

Often written as cm²/Vs ... do these units make sense as a response to an electric field?

Thermal Conductivity

 $K = \frac{1}{3}CvI$ Mean free path velocity Classical:

Specific heat per unit volume

Fermi electron gas:

 $K_{el} = \frac{1}{3} \underbrace{\frac{\pi^2}{3} D(E_F) k_B^2 T}_{C} v_F \underbrace{v_F \tau}_{\ell}$

 $=\frac{\pi^2 n k_B^2 \tau}{3m} T$

The electronic contribution dominates in pure metals (τlarge). In disordered alloys, reduction of mfp may mean phonon contribution is significant.

PH575 Spring 2008 5/22/19

Wiedemann- Franz Law:

At not-too-low temperatures, the ratio of the thermal to electrical conductivity of metals is proportional to temperature and the constant of proportionality is material independent!

$$\frac{K_{el}}{\sigma T} = \frac{\frac{\pi^2 n k_B^2 \tau}{3m^*}}{\frac{n e^2 \tau}{m^*}} = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2 = L = 2.45 \times 10^{-8} W\Omega / K^2$$

Metal	0°C	100°C	Metal	0°C	100°C
Ag	2.31	2.37	Pb	2.47	2.56
Au	2.35	2.40	Pt	2.51	2.6
Cu	2.23	2.33	W	3.04	3.20
Mo	2.61	2.79	Zn	2.31	2.33

Seebeck Effect: Electrical voltage from temperature gradient $V = S\Delta T \qquad \begin{array}{c} \text{S = Seebeck coefficient} \\ \bullet \text{ measured in V/K} \\ \bullet \text{ few } \text{µV/K metals; } 100\text{s } \text{µV/K semicond} \\ \bullet \text{ } \text{ } \text{k}_{\text{B}}\text{/e} \text{ is } 82 \text{ } \text{µV/K} - \text{ natural unit of measure} \\ \end{array}$ What happens when we heat? $\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \end{array}$ Many carriers $\begin{array}{c} \text{Few carriers} \\ \end{array}$

Seebeck Effect: Electrical voltage from temperature gradient

 $V = S\Delta T$

S = Seebeck coefficient

- measured in V/K
- few $\mu V/K$ metals; 100s $\mu V/K$ semicond
- k_B/e is also V/K measure

What happens when we heat?

Diffusion

Electric field results

Seebeck Effect: Electrical voltage from temperature gradient

Can show that S for free electron gas is:

$$S = -\frac{c_v}{3ne}$$

With correct form for $C_{\rm v}$ (accounting for Fermi statistics) we get correct size, temperature dependence, but it is always negative! Need the concept of a hole.

PH575 Spring 2008 5/22/19

Hall Effect: field perpendicular to current results in transverse voltage

$$m * \frac{d\vec{v}}{dt} + \frac{m * \vec{v}}{\tau} = q(\vec{\varepsilon} + \vec{v} \times \vec{B})$$

Static case: d/dt = 0 $\vec{B} = B\hat{z} = (0,0,B)$

Magnetic Response: Hall Effect

Routinely used to measure carrier type and concentration in semiconductors

This derivation is for simple one-band model; more complex if 2 or more bands involved

 R_H large if n small

Related concept is mobility μ of carriers:

$$\sigma = \frac{ne^2\tau}{m^*} = ne\mu \qquad \mu = \frac{e\tau}{m^*} = \sigma R_H$$

Mobility μ of carriers measured in cm²/Vs (usually), and is more easily understood as [cm/s]/[V/cm] or velocity per field. $\mu_{\text{GaAs}} \approx 8000 \text{ cm²/Vs}, \, \mu_{\text{Si}} \approx 100 \text{ cm²/Vs}, \, \mu_{\text{P-TCO}} \approx 1 \text{ cm²/Vs}$

