

PH575 Spring 2019

Review Lecture \#1a

Complex numbers

Complex numbers

$$
z=a+i b \quad z=|z| e^{i \phi}
$$

$\left.\begin{array}{l}\operatorname{Re}(z)=a \\ \operatorname{Im}(z)=b\end{array}\right\}$ real numbers

$$
|z|=\sqrt{a^{2}+b^{2}}
$$

$$
\tan \phi=\frac{b}{a}
$$

Euler's relation

$\exp (i \phi)=\cos \phi+i \sin \phi$

Consistency argument

$$
z=a+i b \quad z=|z| e^{i \phi}
$$

If these represent the same thing, then the assumed Euler relationship says:

$$
a+i b=|z| \cos \phi+i|z| \sin \phi
$$

Equate real parts:

$$
a=|z| \cos \phi
$$

Equate imaginary parts:

$$
b=|z| \sin \phi
$$

$$
|z|=\sqrt{a^{2}+b^{2}}
$$

$$
\tan \phi=\frac{b}{a}
$$

Adding complex numbers is easy in rectangular form

$$
\begin{aligned}
& z=a+i b \\
& w=c+i d \\
& z+w=[a+c]+i[b+d]
\end{aligned}
$$

Multiplication and division of complex numbers is easy in polar form

$$
\begin{aligned}
z & =|z| e^{i \phi} \\
w & =|w| e^{i \theta}
\end{aligned}
$$

$$
z \mathcal{W}=|z||w| e^{i[\phi+\theta]}
$$

PH575 Spring 2019

Review Lecture \#1b
Atomic orbitals, quantum numbers

Atomic states (Hydrogen Atom; wave function form)

$\begin{array}{lll} & R_{n, \ell}(r) Y_{\ell, m_{\ell}}(\theta, \phi) \chi_{m_{s}} \text { Eigenfunctions; wave functions } \\ & \left|R_{n, \ell}(r) Y_{\ell, m_{\ell}}(\theta, \phi) \chi_{m_{s}}\right|^{2} \text { E> electron distribution }\end{array}$

Visualize electron clouds

https://winter.group.shef.ac.uk/orbitron/

Explore

Compare s (or p,d) orbitals for different n Compare s,p,d etc within given n Explore tabs - electron density, equations Energy Hybrids (linear combinations)

The Hydrogen Atom

$$
\left|\varphi_{n, \ell, m_{\ell}, m_{s}}\right\rangle \quad\left\langle\vec{r} \mid \varphi_{n, \ell, m_{\ell}, m_{s}}\right\rangle=R_{n, \ell}(r) Y_{\ell, m_{\ell}}(\theta, \phi) \chi_{m_{s}}
$$

Quantum numbers

n	Principal quantum number. Sets avg. distance from nucleus. Sets energy scale. $n=1,2,3,4 \ldots$
l	Orbital angular momentum is $I=0(s), 1(p), 2(d), 3(f), \ldots n-1$$\quad \sqrt{\ell(\ell+1)} \hbar$
m_{l}	Magnetic quantum number gives orb. am projection on z-axis. $m_{l}=0, \pm 1, \pm 2 \ldots \pm l$
s	Spin quantum number is always $1 / 2$ for an electron.
m_{s}	Spin magnetic quantum number gives spin am projection on z-axis. $m_{s}= \pm 1 / 2$

Atomic states - radial
(Hydrogen Atom; wave function form)

$$
\left\langle\vec{r} \mid \varphi_{n, \ell, m_{t}, m_{s}}\right\rangle=R_{n, \ell}(r) Y_{\ell, m_{t}}(\theta, \phi) \chi_{m_{s}}
$$

Radial wavefunction - size of electron cloud

Atomic states - angular; complex
(Hydrogen Atom; wave function form)

$$
\left\langle\vec{r} \mid \varphi_{n, \ell, m_{\ell}, m_{s}}\right\rangle=R_{n, \ell}(r) Y_{\ell, m_{\ell}}(\theta, \phi) \chi_{m_{s}}
$$

Spherical harmonics - angular dependence - bonding
Page 239 of Sutton lists these functions

$$
\begin{gathered}
Y_{0,0}(\theta, \phi)=\frac{1}{\sqrt{4 \pi}} \begin{array}{c}
\text { Spherically symmetric } \\
l=0 \\
Y_{1, \pm 1}(\theta, \phi)=\mp \frac{3}{\sqrt{8 \pi}} \sin \theta e^{ \pm i \phi} \\
\left|Y_{\ell}^{m_{\ell}}(\theta, \phi)\right|^{2}
\end{array} .
\end{gathered}
$$

$\left|Y_{3}^{3}(\theta, \phi)\right|^{2}$
$\left|Y_{3}^{1}(\theta, \phi)\right|^{2}$
$\left|Y_{2}^{2}(\theta, \phi)\right|^{2}$

PH575 Spring 2019

Lecture \#1-
Review of atomic wave functions
Review of bra-ket notation and
$\left\langle n \ell m_{\ell} \mid n \ell m_{\ell}\right\rangle$
$\sum_{i}|i\rangle\langle i|=1$
$\beta=\langle 1| \hat{H}|2\rangle$

H atom atomic orbitals form an orthonormal set

Two vectors are orthogonal if

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+\ldots=0
$$

A vector is normalized if

$$
\vec{a} \bullet \vec{a}=a_{1} b_{1}+a_{2} a_{2}+a_{3} a_{3}+\ldots=1
$$

H atom atomic orbitals form an orthonormal set

A function is a giant, dense, vector. e.g.

$$
f=(\ldots 4,1,0,1,4,9 \ldots)
$$

Define "dot product" or "projection" of 2 functions:

$$
\begin{aligned}
" f(x) \cdot g(x) " & =\sum_{x_{i}} f^{*}\left(x_{i}\right) g\left(x_{i}\right) \\
& \rightarrow \int_{\text {all space }} f^{*}(x) g(x) d x
\end{aligned}
$$

Two functions are orthogonal if

$$
\begin{aligned}
& \int_{\text {all space }} f^{*}(x) g(x) d x=0 \\
& \int_{\text {all space }} f^{*}(x) f(x) d x=1
\end{aligned}
$$

The red function is $\sin (k x)$. The blue function is $\sin (2 k x)$. The black function is $\sin (k x){ }^{*} \sin (2 k x)$.

- "All of space" is two cycles of the red function.
- The integral of the black function over all space is
- Zero! The projection of $\sin (k x)$ onto $\sin (2 k x)$ is zero

H atom atomic orbitals form an orthonormal set

H atomic functions:
$\iiint_{\text {allspace }} R_{n^{\prime}, \ell^{\prime}}^{*}(r) Y_{\ell^{\prime}, m_{\ell}}^{*}(\theta, \phi) R_{n, \ell}(r) Y_{\ell, m_{\ell}}(\theta, \phi) d V=\delta_{n n^{\prime}} \boldsymbol{\delta}_{\ell \ell^{\prime}} \boldsymbol{\delta}_{m_{\ell} m_{\ell^{\prime}}}$

Angular and radial parts are also separately orthonormal:

$$
\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} Y_{\ell^{\prime}, m_{\ell}}^{*}(\theta, \phi) Y_{\ell, m_{\ell}}(\theta, \phi) \underbrace{\sin \theta d \theta d \phi}_{d \Omega}=\boldsymbol{\delta}_{\ell \ell^{\prime}} \boldsymbol{\delta}_{m_{\ell} m_{\ell^{\prime}}}
$$

Now use "bra-ket" notation for the same thing

H atom atomic orbitals form an orthonormal set

Now use "bra-ket" notation for the same thing

$$
\left.\begin{array}{rl}
\left\langle\ell^{\prime}, m_{\ell}^{\prime} \mid \ell, m_{\ell}\right\rangle & \equiv \int_{a l l} Y_{\ell, m_{i^{\prime}}}^{*}(\theta, \phi) Y_{\ell, m_{\ell}}(\theta, \phi) d \Omega \\
& =\delta_{\ell \ell} \delta_{m_{i} m_{\prime^{\prime}}}
\end{array}\right]
$$

Bra $=$ complex conjugate of ket: $\quad\left\langle\ell, m_{\ell}\right| \doteq Y_{\ell, m_{\ell}}^{*}(\theta, \phi)$
$\langle\mid\rangle=$ integrate over all space
\doteq "dot equals" means "is represented by"

The Hydrogen Atom s, p, d...

The Hydrogen Atom s, p, $d \ldots$

$$
\left\langle\vec{r} \mid p_{x}\right\rangle=\sqrt{\frac{3}{4 \pi}} R_{n, 1}(r) \frac{x}{r}
$$

s, p, d etc. orbitals are linear combinations of spherical harmonics that are real \& often more convenient. (Sutton 1.21, 1.22)

$$
d_{2 x}=\sqrt{\frac{15}{4 \pi}} \frac{z x}{r^{2}}
$$

$$
d_{x^{2}-y^{2}}=\sqrt{\frac{15}{4 \pi}} \frac{x^{2}-y^{2}}{2 r^{2}}
$$

p orbitals are linear combinations of $Y_{1 m}$

$$
p_{y}=\sqrt{\frac{3}{4 \pi}} \frac{y}{r}
$$

p_{y} is a linear combination of the $\mathrm{Y}_{1,1}$ and $Y_{1,-1}$ spherical harmonics.

Deconstruct p orbitals into $Y_{1 m}$ components by projecting

$$
\left|p_{y}\right\rangle=\left\langle Y_{1,-1} \mid p_{y}\right\rangle\left|Y_{1,-1}\right\rangle+\left\langle Y_{1,+1} \mid p_{y}\right\rangle\left|Y_{1,+1}\right\rangle+\left\langle Y_{1,0} \mid p_{y}^{\prime}\right\rangle\left|Y_{1,0}\right\rangle
$$

$$
\begin{aligned}
& \text { Projection } \\
& \text { of }\left|p_{y}\right\rangle_{\text {on }}\left|Y_{1,-1}\right\rangle \text { Projection }\left|p_{y}\right\rangle_{\text {on }}\left|Y_{1,+1}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { Projection } \\
& \text { of }\left|p_{y}\right\rangle_{\text {on }}\left|Y_{1,0}\right\rangle
\end{aligned}
$$

Project p_{y} onto Y_{1-1} :

$$
\left\langle Y_{1,-1} \mid p_{y}\right\rangle=?
$$

Deconstruct p orbitals into $Y_{1 m}$ components by projecting

$$
\begin{aligned}
& \left\langle Y_{1,-1} \mid p_{y}\right\rangle=\langle @|=\int_{\text {volume }} Y_{1,-1}^{*} p_{y} d \Omega \\
& \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi}\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{i \phi}\left(\frac{3}{4 \pi}\right)^{1 / 2} \frac{y}{r} \sin \theta d \theta d \phi \\
& \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi}\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{i \phi}\left(\frac{3}{4 \pi}\right)^{1 / 2} \frac{r \sin \theta \sin \phi}{r} \sin \theta d \theta d \phi \\
& \frac{1}{\sqrt{2}}\left(\frac{3}{4 \pi}\right) \underbrace{\int_{\theta=0}^{\pi} \sin ^{3} \theta d \theta}_{4 / 3} \underbrace{\int_{\phi=0}^{2 \pi} \sin \phi e^{i \phi} d \phi}_{i \pi}=\frac{i}{\sqrt{2}}
\end{aligned}
$$

Expect this!

Language: The ket $\left|p_{y}\right\rangle$ is a superposition of the kets $\left|Y_{1, m}\right\rangle$, and the numbers $\left\langle Y_{1, m_{\ell}} \mid p_{y}\right\rangle$ are the projections of $\left|p_{y}\right\rangle$ onto the basis kets.

$$
\left\langle Y_{1,-1} \mid p_{y}\right\rangle=\frac{i}{\sqrt{2}} ;\left\langle Y_{1,+1} \mid p_{y}\right\rangle=\frac{i}{\sqrt{2}} ;\left\langle Y_{1,0} \mid p_{y}\right\rangle=0
$$

The same thing is stated more generally in Sutton 2.2

$$
|\Psi\rangle=\sum_{a \||\phi\rangle}|\phi\rangle\langle\phi \mid \Psi\rangle
$$

Backup slides on projections of functions

This is a vector, \vec{P} represented in one coordinate system

$$
\vec{P}=\vec{P} \cdot \hat{x} \hat{x}+\vec{P} \bullet \hat{y} \hat{y}
$$

Projection Projection of \vec{P} on \hat{x} of \vec{P} on \hat{y}

$$
\vec{P}=\frac{1}{\sqrt{2}} \hat{x}+\frac{1}{\sqrt{2}} \hat{y}
$$

(Sutton Eq. 2.1)

This is the SAME vector, $\vec{P} \quad \hat{y}^{\prime}$ represented in another coordinate system

A ket, $|\varphi\rangle$, is similar to a vector: we represent it by "projecting" it onto "basis kets" (similar to the axes of the coordinate system)

$$
\begin{array}{cc}
\text { Projection } \\
\text { of } \left.\left|p_{y} y_{\text {on }}\right| Y_{1,-1}\right\rangle & \text { Projection } \\
\text { of }\left|p_{y}\right\rangle_{\text {on }}\left|Y_{1,+1}\right\rangle & \begin{array}{c}
\text { Projection } \\
\text { of }\left|p_{y}\right\rangle_{\text {on }}
\end{array}\left|Y_{1,0}\right\rangle
\end{array}
$$

A bra, $\langle\varphi|$, is the complex conjugate of a ket. A "bra-ket" is simply a projection of one "state" on another. Also called an overlap integral.

$$
\langle\psi \mid \phi\rangle=\int_{\text {volume }} \psi(\vec{r}) * \phi(\vec{r}) d V
$$

We understand what it means to "project" one vector onto another ...

$$
\begin{gathered}
\vec{P}=\left(P_{x}, P_{y}\right) \quad \vec{Q}=\left(Q_{x}, Q_{y}\right) \\
\vec{P} \cdot \vec{Q}=P_{x} Q_{x}+P_{y} Q_{y}
\end{gathered}
$$

- Multiply components and add the products.

So what does it mean to "project" one function onto another?

Think of a function as a vector with many components - each component is the value of the function at a particular point in space:
-At every point in space, multiply the values of the two functions together.
-Add these products. (But now "adding" means "integrating")
-The resulting number is the projection of one function onto the other.

$$
\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\int \phi_{i}^{*}(\vec{r}) \phi_{j}(\vec{r}) d V
$$

April , 2019 Here are some examples...

The blue function is $\sin (k x)$. The red function is also $\sin (k x)$ - it's under the blue one. The black function is $\sin ^{2}(k x)$ - the product of the two.

-"All of space" is ône cycle of the red or blue function.
-The integral of the black function over all space is
${ }^{\text {April }} \mathrm{i}^{2} \mathrm{~N} 10 \mathrm{t}$ zero! The proiection of $\sin (k x)$ onto itself is 1 !

The red function is $\sin (k x)$. The blue function is $\sin (2 k x)$. The black function is $\sin (k x){ }^{*} \sin (2 k x)$.

- "All of space" is two cycles of the red function.
- The integral of the black function over all space is
- Zero! The projection of $\sin (k x)$ onto $\sin (2 k x)$ is zero

If the projection of one function onto another is zero, we say the functions are orthogonal.

The projection of a function onto itself is always a positive definite number, which we can arrange to be unity by appropriate choice of normalizing constant.

If a set of functions f_{i} form an orthonormal set, then we can say that

$$
\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\int_{\text {space }} \phi_{i}^{*}(\vec{r}) \phi_{j}(\vec{r}) d V=\delta_{i j}
$$

where the Kronecker delta $\delta_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}$

An example with H -atom wave functions
$\left|p_{y}\right\rangle=\left\langle Y_{1,-1} \mid p_{y}\right\rangle\left|Y_{1,-1}\right\rangle+\left\langle Y_{1,+1} \mid p_{y}\right\rangle\left|Y_{1,+1}\right\rangle+\left\langle Y_{1,0} \mid p_{y}\right\rangle\left|Y_{1,0}\right\rangle^{\sim}$
Projection Projection Projection of $\left|p_{y}\right\rangle$ on $\left|Y_{1,-1}\right\rangle$ of $\left|p_{y}\right\rangle$ on $\left|Y_{1,+1}\right\rangle$ of $\left|p_{y}\right\rangle$ on $\left|Y_{1,0}\right\rangle$

Last time we saw that $\left|p_{y}\right\rangle=\frac{i}{\sqrt{2}}\left[\left|Y_{1,-1}\right\rangle+\left|Y_{1,1}\right\rangle\right]$

$$
\left\langle Y_{1,-1} \mid p_{y}\right\rangle=\frac{i}{\sqrt{2}} \quad\left\langle Y_{1,+1} \mid p_{y}\right\rangle=\frac{i}{\sqrt{2}} \quad\left\langle Y_{1,0} \mid p_{y}\right\rangle=0
$$

EXAMPLE: Projection of p_{y} orbital onto spherical harmonic with $I=1, m_{l}=-1$

$$
\begin{aligned}
& \left\langle Y_{1,-1} \mid p_{y}\right\rangle=\langle\bigcirc\rangle=\int_{\text {volume }} Y_{1,-1}^{*} p_{y} d V \\
& \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi}\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{i \phi}\left(\frac{3}{4 \pi}\right)^{1 / 2} \frac{y}{r} \sin \theta d \theta d \phi \\
& \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi}\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{i \phi}\left(\frac{3}{4 \pi}\right)^{1 / 2} \frac{r \sin \theta \sin \phi}{r} \sin \theta d \theta d \phi
\end{aligned}
$$

$$
\frac{1}{\sqrt{2}}\left(\frac{3}{4 \pi}\right) \underbrace{\int_{\theta=0}^{\pi} \sin ^{3} \theta d \theta}_{4 / 3} \underbrace{\int_{\phi=0}^{2 \pi} \sin \phi e^{i \phi} d \phi}_{i \pi}=\frac{i}{\sqrt{2}}
$$

Language: The ket $\left|p_{y}\right\rangle$ is a superposition of the kets $\left|Y_{1, m}\right\rangle$, and the numbers $\left\langle Y_{1, m_{e}} \mid p_{y}\right\rangle$ are the projections of $\left|p_{y}\right\rangle$ onto the basis kets.

The same thing is stated more generally in Sutton 2.2

$$
|\Psi\rangle=\sum_{a l l|\phi\rangle}|\phi\rangle\langle\phi \mid \Psi\rangle
$$

The axes of the coordinate system are orthonormal.

$$
\begin{aligned}
& \hat{x} \cdot \hat{y}=\hat{y} \cdot \hat{z}=\hat{z} \cdot \hat{x}=0 \\
& \hat{x} \cdot \hat{x}=\hat{y} \cdot \hat{y}=\hat{z} \cdot \hat{z}=1
\end{aligned}
$$

The basis kets are also orthonormal.

$$
\left\langle Y_{\ell, m} \mid Y_{\ell^{\prime}, m^{\prime}}\right\rangle=\left\{\begin{array}{lc}
1 & \text { if } \ell=\ell^{\prime} \text { and } m_{\ell}=m_{\ell}{ }^{\prime} \\
0 & \text { if } \ell \neq \ell^{\prime} \text { or } m_{\ell} \neq m_{\ell}{ }^{\prime}
\end{array}\right.
$$

Projections are also called overlap integrals.

- Any basis ket of an orthonormal set has no overlap integral with any other, and unit overlap with itself.
- How do we know which kets are suitable basis kets? Any set of functions that are the eigenfunctions of a particular operator form an appropriate set!
- Example: the $Y_{l, m}$ functions are orthonormal and form suitable basis kets. They are the eigenfunctions of the L^{2} operator (part of the H atom Hamiltonian)
- Let's prove that the $p_{x} p_{y}$ and p_{z} functions (kets) are an orthonormal set, knowing that the $Y_{l, m}$ functions are an orthonormal set.

The following are true. You'll show something similar about d orbitals and $Y_{2, \mathrm{~m}}$ for homework

$$
\begin{aligned}
& \left|p_{y}\right\rangle=\frac{i}{\sqrt{2}}\left[\left|Y_{1,-1}\right\rangle+\left|Y_{1,1}\right\rangle\right] \\
& \left|p_{x}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|Y_{1,-1}\right\rangle-\left|Y_{1,1}\right\rangle\right] \\
& \left|p_{z}\right\rangle=\left|Y_{1,0}\right\rangle
\end{aligned}
$$

Now, what is the projection of the p_{y} ket onto the $\mathrm{p}_{\mathrm{z}} ? \quad\left\langle p_{z} \mid p_{y}\right\rangle$

$$
\begin{gathered}
\left\langle p_{z} \mid p_{y}\right\rangle=\frac{i}{\sqrt{2}}\left\langle p_{z}\right|\left[\left|Y_{1,-1}\right\rangle+\left|Y_{1,1}\right\rangle\right] \\
\left\langle p_{z} \mid p_{y}\right\rangle=\frac{i}{\sqrt{2}}\left\langle Y_{1,0}\right|\left[\left|Y_{1,-1}\right\rangle+\left|Y_{1,1}\right\rangle\right] \\
\left\langle p_{z} \mid p_{y}\right\rangle=\frac{i}{\sqrt{2}}[\underbrace{\left\langle Y_{1,0} \mid Y_{1,-1}\right\rangle}_{0}+\underbrace{\left\langle Y_{1,0} \mid Y_{1,+1}\right\rangle}_{0}]=0
\end{gathered}
$$

$$
\begin{aligned}
\left|p_{z}\right\rangle=\left|Y_{1,0}\right\rangle \quad\left|p_{y}\right\rangle & =\frac{i}{\sqrt{2}}\left[\left|Y_{1,-1}\right\rangle+\left|Y_{1,1}\right\rangle\right] \\
\left|p_{x}\right\rangle & =\frac{1}{\sqrt{2}}\left[\left|Y_{1,-1}\right\rangle-\left|Y_{1,1}\right\rangle\right]
\end{aligned}
$$

You show $\quad\left\langle p_{x} \mid p_{y}\right\rangle=0$

END OF

Backup slides on projections of functions

Spherical Harmonic functions

$$
\begin{aligned}
Y_{00} & =\frac{1}{\sqrt{4 \pi}} \quad \begin{aligned}
\text { (be careful - sometimes normalization is } \\
\text { different in different sources.) }
\end{aligned} \\
Y_{11} & =-\sqrt{\frac{3}{8 \pi}} e^{i \phi} \sin \theta \\
Y_{10} & =\sqrt{\frac{3}{4 \pi}} \cos \theta \\
Y_{22} & =\sqrt{\frac{15}{32 \pi}} e^{2 i \phi} \sin ^{2} \theta \\
Y_{21} & =-\sqrt{\frac{15}{8 \pi}} e^{i \phi} \sin \theta \cos \theta \\
Y_{20} & =\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right)
\end{aligned}
$$

TABLE 4.1
Angular Factors of Conventional Atomic Orbitals

Symbol	Polar	Cartesian	Normalizing factor
s	1	1	$\frac{1}{2}\left(\frac{1}{\pi}\right)^{1 / 2}$
p_{x}	$\sin \theta \cos \phi$	x / r	$\frac{1}{2}\left(\frac{3}{\pi}\right)^{1 / 2}$
p_{y}	$\sin \theta \sin \phi$	y / r	$\frac{1}{2}\left(\frac{3}{\pi}\right)^{1 / 2}$
p_{z}	$\cos \theta$	z / r	$\frac{1}{2}\left(\frac{3}{\pi}\right)^{1 / 2}$
$d_{z^{2}}$	$\left.(3 \cos)^{2} \theta-1\right)$	$\left(3 z^{2}-r^{2}\right) / r^{2}$	$\frac{1}{4}\left(\frac{5}{\pi}\right)^{1 / 2}$
		$\left(2 z^{2}-x^{2}-y^{2}\right) / r^{2}$	$\frac{1}{2}\left(\frac{15}{\pi}\right)^{1 / 2}$
$d_{x z}$	$\sin \theta \cos \theta \cos \phi$	$x z / r^{2}$	$\frac{1}{2}\left(\frac{15}{\pi}\right)^{1 / 2}$
$d_{y z}$		$y z / r^{2}$	2

$d_{x^{2}-y^{2}}$	$\sin ^{2} \theta \cos 2 \phi$	$\left(x^{2}-y^{2}\right) / r^{2}$	$\frac{1}{4}\left(\frac{15}{\pi}\right)^{1 / 2}$
$d_{x y}$	$\sin ^{2} \theta \sin 2 \phi$	$x y / r^{2}$	$\frac{1}{4}\left(\frac{15}{\pi}\right)^{1 / 2}$
$f_{z^{3}}$	$\left(5 \cos ^{3} \theta-3 \cos \theta\right)$	$\begin{aligned} & z\left(5 z^{2}-3 r^{2}\right) / r^{3} \\ & \quad\left[2 z^{3}-3 z\left(x^{2}+y^{2}\right)\right] / r^{3} \end{aligned}$	$\frac{1}{4}\left(\frac{7}{\pi}\right)^{1 / 2}$
$f_{x z^{2}}$	$\left(5 \cos ^{2} \theta-1\right) \sin \theta \cos \phi$	$\begin{aligned} & x\left(5 z^{2}-r^{2}\right) / r^{3} \\ & \quad\left[4 x z^{2}-x\left(x^{2}+y^{2}\right)\right] / r^{3} \end{aligned}$	$\frac{1}{8}\left(\frac{42}{\pi}\right)^{1 / 2}$
$f_{y z^{2}}$	$\left(5 \cos ^{2} \theta-1\right) \sin \theta \sin \phi$	$\begin{aligned} & y\left(5 z^{2}-r^{2}\right) / r^{3} \\ & \quad\left[4 y z^{2}-y\left(x^{2}+y^{2}\right)\right] / r^{3} \end{aligned}$	$\frac{1}{8}\left(\frac{42}{\pi}\right)^{1 / 2}$
$f_{x y z}$	$\sin ^{2} \theta \cos \theta \sin 2 \phi$	$x y z / r^{3}$	$\frac{1}{4}\left(\frac{105}{\pi}\right)^{1 / 2}$
$f_{z\left(x^{2}-y^{2}\right)}$	$\sin ^{2} \theta \cos \theta \cos 2 \phi$	$z\left(x^{2}-y^{2}\right) / r^{3}$	$\frac{1}{4}\left(\frac{105}{\pi}\right)^{1 / 2}$
$f_{x\left(x^{2}-3 y^{2}\right)}$	$\sin ^{3} \theta \cos 3 \phi$	$x\left(x^{2}-3 y^{2}\right) / r^{3}$	$\frac{1}{8}\left(\frac{70}{\pi}\right)^{1 / 2}$
$1 f_{y\left(3 x^{2}-y^{2}\right)}$	$\sin ^{3} \theta \sin 3 \phi$	$y\left(3 x^{2}-y^{2}\right) / r^{3}$	$\frac{1}{8}\left(\frac{70}{\pi}\right)^{1 / 2}$

PH575 Spring 2019

Lecture \#1c - Operators Sutton Ch. 2 pp 21-25
(McIntyre Ch 1-3)

$$
\begin{aligned}
& \left\langle n \ell m_{\ell} \mid n \ell m_{\ell}\right\rangle \\
& \sum_{i}|i\rangle\langle i|=1 \\
& \beta=\langle 1| \hat{H}|2\rangle
\end{aligned}
$$

OPERATORS

are mathematical instructions that represent physical quantities like energy or momentum. They perform various operations on wave functions or kets, like differentiation, multiplication etc. The result of such an operation may be:
-The same function or ket, multiplied by a constant. In this case we say the function is an EIGENFUNCTION of that operator and the constant is the EIGENVALUE associated with that eigenfunction.

$$
\begin{aligned}
\hat{H} \varphi(r, \theta, \phi)= & E \varphi(r, \theta, \phi) \quad \hat{H}\left|\varphi_{n, \ell, m_{\ell}, m_{s}}\right\rangle=E_{n, \ell, m_{\ell}, m_{s}}\left|\varphi_{n, \ell, m_{\ell}, m_{s}}\right\rangle \\
& -\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \sin (k x)=\frac{\hbar^{2} k^{2}}{2 m} \sin (k x)
\end{aligned}
$$

OPERATORS

are mathematical instructions that represent physical quantities like energy or momentum. They perform various operations on wave functions or kets, like differentiation, multiplication etc. The result of such an operation may be:
-A different function or ket (or sum of kets) multiplied by a constant. In this case we say the function is NOT an eigenfunction of that operator.

$$
\begin{aligned}
\hat{p} \varphi(r) & \neq p \varphi(r) \\
\frac{\hbar}{i} \frac{d}{d x} \sin (k x) & =\frac{\hbar k}{i} \cos (k x)
\end{aligned}
$$

OPERATORS

can also be represented as matrices. In this case, the operator is just a table of projections!

$$
H=\left(\begin{array}{ccc}
\langle 1| H|1\rangle & \langle 1| H|2\rangle & \langle 1| H|3\rangle \\
\langle 2| H|1\rangle & \langle 2| H|2\rangle & \langle 2| H|3\rangle \\
\langle 3| H|1\rangle & \langle 3| H|2\rangle & \langle 3| H|3\rangle
\end{array}\right)
$$

$$
\hat{H}|1\rangle=E_{1}|1\rangle
$$

Now IF

$$
\begin{aligned}
\hat{H}|2\rangle & =E_{2}|2\rangle \\
\hat{H}|3\rangle & =E_{1}|3\rangle
\end{aligned}
$$

Then what is the H matrix?

OPERATORS

as matrices. What are the eigenvectors?

$$
H=\left(\begin{array}{ccc}
E_{1} & 0 & 0 \\
0 & E_{2} & 0 \\
0 & 0 & E_{3}
\end{array}\right)
$$

OPERATORS

can also be represented as matrices. A square matrix acts on a column vector or ket. The result of such an operation may be:

- The same column vector or ket, multiplied by a constant. In this case we say the function is an EIGENVECTOR of that operator and the constant is the EIGENVALUE associated with that eigenvector.

$$
\begin{aligned}
& \left(\begin{array}{ccc}
E_{1} & 0 & 0 \\
0 & E_{2} & 0 \\
0 & 0 & E_{3}
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=E_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{ccc}
E_{1} & 0 & 0 \\
0 & E_{2} & 0 \\
0 & 0 & E_{3}
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=E_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

If an OPERATOR acts on a ket, to produce a new ket, we can project the new ket onto some bra. Choose the kets

$$
\begin{aligned}
& \mid \text {. .) .) }\left|p_{x}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|Y_{1,-1}\right\rangle-\left|Y_{1,1}\right\rangle\right] \\
& \text { |.〇.) }\left|p_{y}\right\rangle=\frac{i}{\sqrt{2}}\left[\left|Y_{1,-1}\right\rangle+\left|Y_{1,1}\right\rangle\right] \\
& \left|p_{z}\right\rangle=\left|Y_{1,0}\right\rangle \\
& \hat{L}^{2}\left|p_{x}\right\rangle=2 \hbar^{2}\left|p_{x}\right\rangle \\
& \hat{L}^{2}\left|p_{y}\right\rangle=2 \hbar^{2}\left|p_{y}\right\rangle \\
& \hat{L}^{2}\left|p_{z}\right\rangle=2 \hbar^{2}\left|p_{z}\right\rangle \\
& \text { These are (degenerate) } \\
& \text { eigenfunctions of the } \\
& \text { "angular-momentum- } \\
& \text { squared" operator. The } \\
& \text { states have definite angular } \\
& \text { momentum. }
\end{aligned}
$$

Now project these new kets onto the three bras. You get 9 numbers Organize them in a matrix

Represent the L^{2} OPERATOR in the basis of $\left|p_{x}\right\rangle,\left|p_{y}\right\rangle,\left|p_{z}\right\rangle$,

$$
\begin{gathered}
\left\langle p_{x}\right| \hat{L}^{2}\left|p_{z}\right\rangle=\left\langle p_{x}\right| 2 \hbar^{2}\left|p_{z}\right\rangle=\left\langle p_{x} \mid p_{z}\right\rangle=0 \\
\left\langle p_{y}\right| \hat{L}^{2}\left|p_{z}\right\rangle=0 \\
\left.\left.\hat{L}^{2}=\begin{array}{c}
\left\langle p_{x}\right\rangle\left|p_{y}\right\rangle\left|p_{z}\right\rangle \\
\left\langle p_{z}\right| \hat{L}^{2}\left|p_{z}\right\rangle \\
\left\langle p_{y}\right| \\
\left\langle p_{z}\right|
\end{array} \right\rvert\, \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] 2 \hbar^{2}
\end{gathered}
$$

Sutton 2.13

$$
\hat{L}^{2}=\left(\begin{array}{lll}
L_{11}^{2} & L_{12}^{2} & L_{13}^{2} \\
L_{21}^{2} & L_{22}^{2} & L_{23}^{2} \\
L_{31}^{2} & L_{32}^{2} & L_{33}^{2}
\end{array}\right)
$$

Represent the L_{z} OPERATOR in the basis of $\left|p_{x}\right\rangle,\left|p_{y}\right\rangle,\left|p_{z}\right\rangle$,

$$
\begin{gathered}
\left\langle p_{x}\right| \hat{L}_{z}\left|p_{z}\right\rangle=\left\langle p_{x}\right| 0 \hbar\left|p_{z}\right\rangle=0 \\
\hat{L}_{z}\left|p_{z}\right\rangle=\frac{\hbar}{\sqrt{2}}\left[-\left|Y_{1-1-1}\right|-\left|Y_{1,1}\right\rangle\right]=i \hbar\left|p_{z}\right\rangle \\
\hat{L}_{z}\left|p_{y}\right\rangle=\frac{i \hbar}{\sqrt{2}}\left[-\left|Y_{t_{1-1}}\right\rangle+\left|Y_{1,1}\right\rangle\right]=-i \hbar\left|p_{z}\right\rangle \\
\hat{L}_{z}=\hbar\left(\begin{array}{ccc}
0 & i & 0 \\
-i & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Multi-electron Atoms

Much more complicated: e-p; e-e interactions change Schrödinger equation. We don't need to worry too much about all of this.

$$
\hat{H} \varphi\left(\vec{r}_{1}, \vec{r}_{2}\right)=E \varphi\left(\vec{r}_{1}, \vec{r}_{2}\right)
$$

6 coordinates, not 3
(plus spin)

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \nabla_{1}^{2}-\frac{\hbar^{2}}{2 m} \nabla_{2}^{2}-\frac{2 e^{2}}{r_{1}}-\frac{2 e^{2}}{r_{2}}+\frac{e^{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}
$$

Multi-electron Atoms

- Much more complicated: e-p; e-e interactions change Schrödinger equation
- Radial wave functions change, but angular character is very similar to H atom wave functions
- Still makes sense to talk about s, p, d, f orbitals
-Energy levels no longer degenerate w.r.t. n
- Leads to consistent picture of elements - periodic table - with $n s, n p$, etc orbitals filled with 2 electrons each (spin) in accordance with Pauli exclusion principle and Hund's rules Sutton Table 1.2 for electronic configurati ${ }^{2}$

Multi-electron atoms - some n-degeneracy is lifted

April 1, 2019

Period

Multi-electron Atoms

Multi-electron Atoms

TABLE 1.2 The Ground-State Electronic Configurations of the Smallest Atoms

Atom	Name of element	Atomic number	$1 s$	$2 s$	$2 p_{x}$	$2 p_{y}$	$2 p_{z}$	$3 s$
H	Hydrogen	1	\uparrow					
He	Helium	2	$\uparrow \downarrow$					
Li	Lithium	3	$\uparrow \downarrow$	\uparrow				
Be	Beryllium	4	$\uparrow \downarrow$	$\uparrow \downarrow$				
B	Boron	5	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow			
C	Carbon	6	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow		
N	Nitrogen	7	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	
O	Oxygen	8	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow	
F	Fluorine	9	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	
Ne	Neon	10	$\uparrow \downarrow$					
Na	Sodium	11	$\uparrow \downarrow$	\uparrow				

