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Abstract. We study the dynamics of Bloch oscillations in a one-dimensional
periodic potential plus a (relatively weak) static force. The tight-binding and
single-band approximations are analysed in detail, and also in a classicalized
version. A number of numerically exact results obtained from wavepacket
propagation are analysed and interpreted in terms of the tight-binding and
single-band model, both in co-ordinate and momentum space.
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1. Introduction

In this paper we will discuss in detail an elementary quantum system, namely the dynamics of a
single particle in a one-dimensional periodic potential under the influence of a static force, i.e.
the dynamics generated by the Hamiltonian

H = H0 + Fx = p2

2M
+ V(x) + Fx, V(x + d) = V(x). (1)

The dynamics is non-intuitive: instead of the expected accelerated motion towards infinity, one
observes a coherent oscillation with period

TB = 2πh̄

dF
(2)

within a well-defined space interval of length L, which is inversely proportional to the force F .
A simplistic explanation can be given by the invariance under a combined translation in space
by one lattice period d and an energy shift δE = Fd, which leads to a phase shift δEt/h̄, i.e.
at a time TB this phase equals 2π. Assuming in addition that the Bloch bands of the field-free
system are simply tilted with a slope F , the available interval for a motion in the x-direction is
reduced to

L = �/F, (3)

where � is the bandwidth. This simple tilted-band picture, which seems to go back to Zener’s
celebrated paper [1], provides an easy way to obtain a first information about dynamical features
of the system. Essentially, the same ideas appear in the context of the ‘acceleration theorem’,
where the starting point is again the field-free Bloch band picture. The quasi-momentum κ

changes linearly with time, κ(t) = κ(0)− Ft/h̄, until it reaches the boundary of the Bloch band,
where it is Bragg-reflected. This picture dates back to the work of Bloch [2] and Zener [1]. For a
recent discussion, see [3] and references therein; a recent rigorous derivation of the ‘acceleration
theorem’ can be found in [4].

An alternative description is possible in terms of Wannier–Stark resonance states (see e.g.
the review [5] and references therein). Let us just state here that the energy spectrum consists
of ladders

Eα,n = Eα + ndF, α ∈ N0, n ∈ Z (4)

the Wannier–Stark ladders, where α denotes the different ladders and n the equidistant rungs.
Moreover, the corresponding eigenstates, the Wannier–Stark states �α,n, are resonance states
and the energies (4) are complex-valued, where the imaginary part of Eα gives the (reciprocal)
lifetime. An efficient method for a numerical calculation of Wannier–Stark resonance energies
can be found in [5, 6].

Figure 1 shows a schematic illustration of the potential cos x + Fx for a relatively strong
field F = 0.05. The positions of the lowest three Wannier–Stark ladders are marked by lines
whose thickness denotes the increasing width (the decreasing lifetime).

In view of the long history of the theoretical understanding of the dynamics of
Wannier–Stark systems extending over many decades, an experimental investigation started
only recently; however, it is quite intensive and in an increasing number of different
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Figure 1. Schematic illustration of the Wannier–Stark ladders of resonances. The
width of the lines indicate the width of the levels, i.e. their instability.

systems. Experimental evidence of Bloch oscillations can be found for electrons in solid
state superlattices [7]–[11], for ultracold atoms in optical lattices, e.g. in the groups of
Salomon [12]–[14] or Raizen [15]–[19] (see [20] for a review), for Bose–Einstein condensates
[21]–[23], for photons in temperature-tuned waveguide arrays [24]–[28], and exponentially
chirped Bragg gratings [29] and may also be observable for magnetic solitons [30]. In addition,
the coupling of Bloch oscillations of electrons in superlattices to optical phonons has been
studied [31].

Although various special aspects of Bloch oscillations have been investigated previously,
the general features of the dynamics have not been treated before and the present paper
therefore fills a gap in the literature.

2. Single-band tight-binding dynamics

Two related models allow an analytic treatment of the dynamics of Bloch oscillators and provide
valuable insight, namely the tight-binding and single-band model. In their simplest form, these
models entirely neglect the coupling between bands, i.e. Zener tunnelling, and therefore, of
course, also the decay. In the following, we will briefly rederive the basic results, although in
the not so well known momentum representation, which offers various advantages compared to
the traditional approach. We restrict the discussion to the most simple case where only nearest-
neighbour coupling is included. One should be aware of the fact, however, that a tight-binding
model can include couplings of longer range as well as coupling between bands, e.g. in the
analysis of Bloch oscillations in a two-band model [32].

2.1. Tight-binding model: basic features

Let us start with a brief discussion of the tight-binding model (for more details see [33, 34] and
references therein) described by the Hamilton operator in terms of Wannier states |n〉 which are
localized on the nth period of the potential, i.e. on ‘site’ n:

H = −�
4

+∞∑
n=−∞

(|n〉〈n + 1| + |n + 1〉〈n|) + dF
+∞∑

n=−∞
n|n〉〈n| (5)

New Journal of Physics 6 (2004) 2 (http://www.njp.org/)

http://www.njp.org/


4 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

(to simplify the notation, throughout this subsection the band index α is suppressed). Note
that in this model only neighbouring sites are directly coupled. Alternatively, one can use a
representation in Bloch waves

|κ〉 =
+∞∑

n=−∞
|n〉〈n|κ〉 =

√
d

2π

+∞∑
n=−∞

|n〉 einκd, (6)

which satisfy the Bloch condition 〈n + 1|κ〉 = eiκd〈n|κ〉 with quasi-momentum κ confined to the
Brillouin zone −b/2 � κ � +b/2 (b = 2π/d). By means of the identities

+∞∑
n=−∞

〈κ′|n + 1〉〈n|κ〉 = e−iκ′d d

2π

+∞∑
n=−∞

ein(κ−κ′)d = δ(κ′ − κ)e−iκd,

+∞∑
n=−∞

n〈κ′|n〉〈n|κ〉 = d

2π

+∞∑
n=−∞

nein(κ−κ′)d = δ(κ′ − κ)
i

d

d

dκ
, (7)

we see that the tight-binding Hamiltonian (5) is diagonal, 〈κ′|H |κ〉 = dδ(κ′ − κ)H(κ), with

H(κ) = −�
2

cos(κd) + iF
d

dκ
, (8)

where the first term is the dispersion relation for the field-free case:

E(κ) = −�
2

cos(κd). (9)

The eigenstates of the Hamiltonian (8), the Wannier–Stark states |�m〉, are immediately
found by integrating the first-order differential equation

−�
2

cos(κd)�(κ) + iF
d�(κ)

dκ
= E�(κ) (10)

with the periodic boundary condition �(κ + b) = �(κ). This leads to the energies Em = mdF ,
m = 0,±1, . . . , the Wannier–Stark ladder and the corresponding eigenstates

�m(κ) = 〈κ|�m〉 =
√
d

2π
e−i[mκd+γ sin(κd)], m = 0,±1, . . . (11)

with

γ = �/2dF, (12)

which are normalized with respect to the Brillouin zone |κ| � b/2. The time evolution operator
U(t) in the Bloch wave basis is simply

Uκ′κ(t) = 〈κ′|U(t)|κ〉 =
∑
m

〈κ′|�m〉 e−iEmt/h̄〈�m|κ〉

= d

2π
e−iγ[sin κ′d−sin κd]

∑
m

e−im(κ′−κ+Ft/h̄)d

= e−iγ[sin κ′d−sin κd]δ(κ′ − κ + Ft/h̄) (13)
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Figure 2. Wannier–Stark state�0 in the Wannier (left) and Bloch representation
(right) for γ = 15.8.

where the reduction to the Brillouin zone |κ| � b/2 is understood. We see that the quasi-
momentum κ′ follows the classical acceleration

κ′ = κt = κ − Ft/h̄. (14)

The description in terms of the Wannier states is a little bit more elaborate. Fourier
transformation yields

�m(n) = 〈n|�m〉 =
∫ +b/2

−b/2
dκ〈n|κ〉〈κ|�m〉 = d

2π

∫ +b/2

−b/2
dκ ei[(n−m)κd−γ sin(κd)]

= 1

2π

∫ +π

−π
du ei[(n−m)u−γ sin u] = Jn−m(γ) (15)

because of the integral representation of the Bessel function [35]. This provides the well-known
Wannier–Stark states [33, 36] in the Wannier representation:

|�m〉 =
∑
n

Jn−m(γ)|n〉. (16)

Figure 2 shows, as an illustrative example, the Wannier–Stark states in the Wannier and
Bloch representation for parameters� = 0.994, d = 2π and F = 0.005, i.e. γ = 15.8, which is
related to the experimental results in [21] and is also used in the exact numerical computations
discussed in section 3. From the properties of the Bessel functions [35], we know that Jn−m(γ) is
mainly localized in the interval |m− n| < γ , i.e. the Wannier–Stark states extend over an interval

L = 2γd = �/F (17)

as already stated in (3). Outside this interval, the Bessel functions decay as Jn(γ) ∼ γn.
Furthermore, the Bessel functions strongly oscillate for negative values of the index because
of the property J−n(z) = (−1)nJn(z). We will see that the spatial extension of the Wannier–Stark
state determines the boundaries of the Bloch oscillations.
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Figure 3. Breathing mode for a state initially localized at n = 0 (left) and
oscillatory mode for an extended Gaussian distribution (22) with β = 0.01 (right)
in the tight-binding model with γ = 15.8. Shown is a colour map of |〈n|ψ(t)〉| as
a function of t/TB and n.

In the basis of Wannier states one obtains the propagator as [33, 36]

Unn′(t) = 〈n|U(t)|n′〉 =
∑
l

〈n|�l〉e−iElt/h̄〈�l|n′〉

= Jn−n′
(

2γ sin
ωBt

2

)
ei(n−n′)(π−ωBt)/2−in′ωBt, (18)

the Fourier image of (13). Here ωB = 2π/TB = dF/h̄ is the Bloch frequency. The time evolution
operator is periodic with the Bloch period TB = 2πh̄/(dF ). It should be noted that this analysis
can also be extended to the case of a time-dependent force F(t) [33, 37, 38].

Let us consider two illustrating limits of the dynamics generated by (18). For an initial state

|ψ(t)〉 =
∑
n

cn(t)|n〉,
∑
n

|cn|2 = 1, (19)

which is strongly localized in co-ordinate space, e.g. in the extreme case cn(0) = δn0 where a
single Wannier state n = 0 is populated at time t = 0, the time dependence is

cn(t) = Un0(t) = Jn

(
2γ sin

ωBt

2

)
ein(π−ωBt)/2. (20)

In such a breathing mode, the wavepackets widen and shrink periodically populating an interval

|n| < 2γ
∣∣∣sin

ωBt

2

∣∣∣ (21)

(index of the Bessel function smaller than its argument). Figure 3 shows such a breathing
oscillation, again for parameter γ = 15.8 used already in figure 2.

In the other extreme of a broad Gaussian wavepacket,

cn(0) = g exp(−βn2 + inκ0d) (22)

New Journal of Physics 6 (2004) 2 (http://www.njp.org/)

http://www.njp.org/


7 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

−40 −20 0 20
−0.4

−0.2

0

0.2

0.4

n

re
al

<
n

ψ
>

−40 −20 0 20
−0.4

−0.2

0

0.2

0.4

n

re
al

<
n

ψ
>

Figure 4. Real part of the wavefunction 〈n|ψ(t)〉 (red ∗) for a broad initial
Gaussian with distribution (22) with β = 0.01 in the tight-binding model with
γ = 15.8 for times t = T/4 (left) and T/2 (right). Also shown is the initial
distribution (blue o).

(g is a normalization factor) with small β, the time evolution of the coefficients is
approximately given by

cn(t) ≈ g exp(−i�(t) + in(κ0d − ωBt)− β(n− n(t))2) (23)

(see [33] for details), i.e. a Gaussian with wavenumber κt = κ − Ft/h̄, as already found in
(14), whose centre performs a Bloch oscillation:

n(t) = γ[cos(κ0d − ωBt)− cos(κ0d)] = −2γ sin
ωBt

2
sin

(ωBt
2

− κ0d
)
. (24)

�(t) is the dynamical phase well known from the discussion of an adiabatic evolution of
eigenstates in systems with parameter-dependent Hamiltonians:

�(t) = 1

h̄

∫ t

0
E(κt′) dt′ = − 1

F

∫ κ0−Ft/h̄

κ0

E(κ) dκ

= − 2γ sin
ωBt

2
cos

(ωBt
2

− κ0d
)

(25)

for the dispersion relation E(κ) given in (9). An example is shown in figure 3. The amplitude of
this oscillation, γ , is half of the amplitude of the breathing mode and the width of the wavepacket
is almost constant, as will be discussed in more detail in section 2.2. Note that, in this case, the
momentum distribution is sharply localized at κ0 = 0, whereas it is extended in the case of a
breathing mode.

The absolute value of the wavefunction shown in figure 3 does not resolve an important
difference between the left and the right turning points of the Bloch oscillation, which is due to
the variation of the phase. Figure 4 shows the real part of the wavefunction for a broad initial
Gaussian distribution (22) with β = 0.01 after a quarter and half of a Bloch period. In particular,
at t = TB/2, the wavefunction is real and changes sign from one site to the next because of the
phase term einωBt = (−1)n. Note also a similar behaviour of the Wannier–Stark state shown in
figure 2.
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Figure 5. Bloch oscillation for Gaussian distributions (22) with β = 0.3 (left)
and 0.1 (right) in the tight-binding model with γ = 15.8. Shown is a colour map
of |〈n|ψ(t)〉| as a function of t/TB and n.

For distributions which are not sharply localized in momentum or position, an
intermediate behaviour is found, as illustrated in figure 5. In closing this subsection it should be
noted that the analytical treatment of the tight-binding model can also be extended to
the case where the force is explicitly time-dependent, F = F(t), for example F(t) = F0 +
F1 sin(ωt) (a combined dc–ac Stark system), where the case ω/ωB rational is of particular
interest (see e.g. [33]).

2.2. Tight-binding model: expectation values

Important features of the dynamics of Bloch oscillations can be understood in terms of the time
dependence of the mean position and momentum as well as their variances. In particular, for
the tight-binding model, some analytical expressions have been derived both for time-dependent
and -independent forces [33, 34, 37, 39, 40] using different techniques. Here, we will follow an
algebraic derivation suggested recently [38] which allows a straightforward calculation of the
quantities of interest.

The tight-binding Hamiltonian (8) may also be written as

Ĥ = −�
2

cos(κ̂d) + Fx̂, (26)

where κ̂ and x̂ = id/dκ are operators satisfying the commutation rule [x̂, κ̂] = i. Inevitably,
however, one encounters the well-known difficulties related to inconsistencies in the definition
of angle operators (see e.g. [41, 42] and references therein). We therefore prefer to use the unitary
operators [42]

K̂ = exp(−iκ̂d) =
+∞∑

n=−∞
|n〉〈n + 1|, K̂|n〉 = |n− 1〉 (27)

and K̂†. With

x̂ = dN̂ = d

+∞∑
n=−∞

n|n〉〈n|, (28)
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the tight-binding Hamiltonian is

Ĥ = −�
4
(K̂ + K̂†) + dFN̂. (29)

Using the commutators

[K̂, N̂] = K̂, [K̂†, N̂] = −K̂†, [K̂, K̂†] = 0, (30)

one can easily solve the Heisenberg equations of motion for a general time-dependent force
F = F(t). Here we are aiming at a calculation of the time dependence of the expectation values.

For a normalized initial state which can be written as a linear combination of Wannier or
Bloch states,

|ψ〉 =
∑
n

cn|n〉 =
∫ +b/2

−b/2
dκ c(κ)|κ〉 (31)

the expectation value of K̂ is the coherence parameter

K = |K| eiκ0d = 〈ψ|K̂|ψ〉 =
∑
n

c∗
n−1cn =

∫ +b/2

−b/2
dκ |c(κ)|2 eiκd (32)

(the phase of the expectation value is used to define κ0).
The time evolution

˙̂
Kt = i

h̄
[Ĥ , K̂t] = idF

h̄
[N̂t, K̂t] = − idF

h̄
K̂t (33)

can be solved immediately:

K̂t = e−iηt K̂ with ηt = d

h̄

∫ t

0
dt′F(t′). (34)

Using K̂†
t = e+iηt K̂† we obtain

˙̂
Nt = i

h̄
[Ĥ t, N̂t] = − i�

4h̄
[K̂t + K̂†

t , N̂ t] = − i�

4h̄
(K̂t − K̂†

t ) (35)

and finally

N̂t = N̂ − i�

4h̄
(EtK̂ − E∗

t K̂
†) with Et =

∫ t

0
dt′ e−iηt′ . (36)

The expectation values are therefore

〈K̂〉t = e−iηt〈K̂〉0 = e−i(ηt−κ0d) |K|, (37)
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〈N̂〉t = 〈N̂〉0 − i�

4h̄
|K|(Et eiκ0d − E∗

t e−iκ0d)

= 〈N̂〉0 − i�

4h̄
|K|

(∫ t

0
dt′ ei(κ0d−ηt′ ) −

∫ t

0
dt′ e−i(κ0d−ηt′ )

)

= 〈N̂〉0 +
�

2h̄
|K|

∫ t

0
dt′ sin(κ0d − ηt′)

= 〈N̂〉0 − �

2h̄
|K|(vt cos κ0d − ut sin κ0d) (38)

with

ut =
∫ t

0
dt′ cos ηt′ , vt =

∫ t

0
dt′ sin ηt′ . (39)

For the case of constant F we have ηt = ωBt and these expressions reduce to

ut = 1

ωB
sinωBt, vt = 1

ωB
(1 − cosωBt) (40)

and (38) can be rewritten as

〈N̂〉t = 〈N̂〉0 − 2γ |K| sin
ωBt

2
sin

(ωBt
2

− κ0d
)
. (41)

For the example of a Gaussian distribution (22) this is simply the dynamics of its centre n(t)
given in (24) multiplied by |K|.

In the same way, one can derive analytic expressions for K2
t , N

2
t and for their expectation

values. Introducing the abbreviations

L = |L| eiν =
∑
n

c∗
n−2cn =

∫ +b/2

−b/2
dκ |c(κ)|2 e2iκd, (42)

J =
∑
n

(2n− 1)c∗
n−1cn = |J | eiµ (43)

we find

〈K̂2〉t = e−2iηt〈K̂2〉0 = e−2iηt L (44)

and after some algebra

〈N̂2〉t = 〈N̂2〉0 +
�2

8h̄2 [u2
t + v2

t − |L|{(u2
t − v2

t ) cos ν + 2utvt sin ν}]

+
�

2h̄
|J | [ut sinµ− vt cosµ]. (45)

The equations for the expectation values simplify for a time-independent force F :

〈N2〉t = 〈N2〉0 + 2γ2 sin2 ωBt

2
(1 − |L| cos(ωBt − ν)) + 2γ|J | sin

ωBt

2
sin

(
µ− ωBt

2

)
, (46)

where γ is as defined in (12).
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It is illuminating to look at two limiting cases. If, initially, only a single site n = 0 is
populated, we have 〈N〉0 = 〈N2〉0 = 0 and therefore with K = L = J = 0

〈N〉t = 0, (47)

�Nt = �

2
√

2h̄

√
u2
t + v2

t (48)

and for time-independent F

�Nt =
√

2γ
∣∣∣sin

ωBt

2

∣∣∣ , (49)

i.e. the mean position is constant in time and the width oscillates with an amplitude in
agreement with the estimate (21) for the breathing mode.

The other limiting case is a broad Gaussian distribution (22). In this case, the sums in (32),
(42) and (43) can be replaced by integrals and we have

K ≈ e−β/2+iκ0d, L ≈ e−2β+i2κ0d, |J | ≈ 0, (50)

i.e. |K| ≈ |L| ≈ 1 and ν ≈ 2κ0d. Therefore, the expectation value (38) is

〈N̂〉t = −�
2h̄
(vt cos κ0d − ut sin κ0d) (51)

and from (45) we get

〈N̂2〉t = 〈N̂2〉0 +
�2

8h̄2 [u2
t + v2

t − (u2
t − v2

t ) cos(2κ0d)− 2utvt sin(2κ0d)]

= 〈N̂2〉0 +
�2

4h̄2 [vt cos(κ0d)− ut sin(κ0d)]
2

= 〈N̂2〉0 + [〈N̂〉t]2 (52)

so that the width is constant in time:

(�Nt)
2 = 〈N̂2〉t − [〈N̂〉t]2 = 〈N̂2〉0. (53)

2.3. Single-band approximation

The single-band approximation is most conveniently formulated in the Bloch wave
representation. Basically, the Hamiltonian (1) and the wavefunctions are expanded in terms
of the Bloch states |ϕα,κ〉 of the field-free Hamiltionian H0 and the interband coupling and some
part of the intraband coupling are neglected (see e.g. [4, 43] for more details). In the following
we will skip the band index α. The resulting Hamiltonian

H(κ) = E(κ) + iF
d

dκ
(54)
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closely resembles the tight-binding one (8), where the cosine-dispersion relation (9) is replaced
by the dispersion relation E(κ) of H0. Here we confine ourselves again to the case of
constant F .

Solving (54) for the eigenstates periodic in κ with period b = 2π/d directly leads to the
quantized Wannier–Stark eigenvalues

En =
∫ b/2

−b/2
E(κ) dκ + ndF, n = 0,±1,±2, . . . , (55)

the Wannier–Stark ladder in the single-band approximation.
If we represent an arbitrary state in the basis of Bloch states with time-dependent expansion

coefficients cα(κ, t), the time-dependent single-band Schrödinger equation reads

ih̄
∂c(κ, t)

∂t
= E(κ)c(κ, t) + iF

∂c(κ, t)

∂κ
(56)

with solution

c(κ, t) = c(κ + Ft/h̄, 0) exp

(
− i

h̄

∫ t

0
E(κ(t′)) dt′

)
(57)

as already postulated by Houston in 1940 [44] in the form

ϕκ(k, t) = ϕκ−Ft/h̄(k) exp

(
− i

F

∫ κ

κ−Ft/h̄
E(κ′) dκ′

)
. (58)

The expectation values for 〈N〉t and 〈N2〉t have been derived by Grecchi and Sacchetti [4] in
the limit of small F :

〈N〉t = 〈N〉0 +
∫ +b/2

−b/2
dκ |c(κ)|2�t(κ) (59)

with

�t(κ) = 1

dF
[E(κ)− E(κ − Ft/h̄)] (60)

and

〈N2〉t = 〈N2〉0 +
∫ +b/2

−b/2
dκ |c(κ)|2[�t(κ)]

2. (61)

These formulae agree with (41) and (46) for the tight-binding dispersion relation (9) in the
limit of small F .

2.4. Classicalization

In this section, we will discuss the classical dynamics generated by the tight-binding
Hamiltonian (26) by replacing the operators x̂ and κ̂ by real numbers x and κ = p/h̄, where p has
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the dimension of a momentum. Here

H = −�
2

cos(pδ) + Fx (62)

with δ = d/h̄ appears as a Hamiltonian function in such a ‘classicalization’. One should be
aware of the fact that this classical dynamics explicitly depends on h̄. Clearly, a classical version
of the single-band model can be generated by replacing the tight-binding dispersion relation
−(�/2) cos(κd) by the dispersion function E(κ). In addition, one can extend the classical
dynamics to time-dependent forces. Here we will, however, confine ourselves to the simplest
case of constant F .

The solution of Hamilton’s equations of motion

ẋ(t) = ∂H

∂p
= �δ

2
sin(pδ), ṗ(t) = −∂H

∂x
= −F (63)

with initial conditions (p0, x0) at t = 0 are

x(t) = x0 − �

F
sin
ωBt

2
sin

(ωBt
2

− p0δ
)
, p(t) = p0 − Ft, (64)

where ωB = Fδ is the Bloch frequency. Let us discuss the dynamics of an initial Gaussian
distribution centred at (p0, x0) in phase space,

W(p, x, t = 0) = (2π�x0�p0)
−1 exp

[
−(x− x0)

2

2�x2
0

− (p− p0)
2

2�p2
0

]
. (65)

The time dependence of the mean momentum and the momentum width is trivial:

〈p〉t = p0 − Ft, �p2
t = �p2

0, (66)

the time evolution of the mean position is given by

〈x〉t = x0 − �

F
e−�p2

0δ
2/2 sin

ωBt

2
sin

(ωBt
2

− p0δ
)

(67)

and the time-dependent mean width reads

(�xt)
2 = (�x0)

2 +
�2

2F 2
(1 − e−�p2

0 δ
2
) sin2ωBt

2
. (68)

From these two equations we can see the following: both 〈x〉t and �xt are periodic
functions of time with the Bloch period. The amplitude of the oscillation around the mean
values is—as anticipated from quantum dynamics—determined by the momentum width. If
this width is small, i.e. if we have a strongly localized initial momentum distribution, then
exp(−�p2

0δ
2) ≈ 1 and we observe a constant width and an oscillating mean value which can

be interpreted as a ‘classical’ Bloch oscillation. In the opposite case, i.e. if the momentum
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Figure 6. Classical Bloch oscillations. Shown is a breathing mode for �p0 = 5
(left) and an oscillatory mode for �p0 = 0.2 (right).

distribution is broad, we get exp(−�p2
0δ

2) ≈ 0 which leads to a nearly constant mean value 〈x〉t
and an oscillating width �xt, a classical breathing mode.

This classical behaviour closely parallels the quantum case. The interference oscillations
are, of course, absent here, but the classical mean value agrees with the quantum case (41). In
the Gaussian approximation (50), we find with β ≈ 1/4�n2

0 = d2/4�x2
0 and �x0�p0 = h̄/2

|K| ≈ e−β/2 ≈ e−�p2
0δ

2/2 (69)

in full agreement with (67).
Figure 6 shows a numerical example of classical Bloch oscillations both for a breathing

and an oscillatory mode.

2.5. Momentum distributions

In the tight-binding and single-band model, one typically uses the Wannier states |n〉 or the Bloch
states |κ〉. In many discussions, one can simply treat n as a substitute of the position co-ordinate
x and κ for the wavenumber k. The first substitution is not critical because of the localization
properties of the Wannier states in position space (ψn(x) = 〈x|n〉 is exponentially localized on
site n [45]). Therefore the wavefunction in position space

ψ(x) =
∑
n

cnψn(x) (70)

appears as a locally smoothed version of the discrete distribution
∑

n cnδ(x− nd) and a
continuous Wannier–Stark wave function �m(x) will be quite similar to the discrete version
�m(n) shown in figure 2.

For the momentum, however, the situation is different and it is important to distinguish
between the quasi-momentum κ and the ‘true’momentum k. It is elementary to prove the relations

ψn(k) = 〈k|n〉 = e−imkdψ0(k), (71)

ϕκ(k) = 〈k|κ〉 =
√

2π

d
ψ0(k)

∑
n

δ(k − κ − nb) (72)
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Figure 7. Wannier state ψ0(k) in the momentum representation for the potential
V(x) = cos x. Shown are the absolute value and the real part.

for the momentum representation of the Wannier or Bloch states. An example of
the momentum representation of a Wannier state is shown in figure 7. The momentum distribution
of an arbitrary state with Bloch representation

|ψ〉 =
∫ +b/2

−b/2
dκc(κ)|κ〉 (73)

is therefore

ψ(k) = 〈k|ψ〉 =
√

2π

d
ψ0(k)

∑
n

c(k − nb). (74)

Hence these distributions are determined by the envelope function |ψ0(k)|, which is mainly
localized in the interval |k| < b/2, the Brillouin zone, and decays rapidly outside this region.
This envelope function is multiplied by periodically repeated copies of the quasi-momentum
distribution c(κ).

Within the tight-binding model, one can furthermore write down the following simple
relation for the momentum representation of the Wannier–Stark states:

�m(k) = e−imkd�0(k) = e−i[mkd+γ sin(kd)]ψ0(k), (75)

where the phase factor is periodic in k with period b and the envelope function is again given
by the Wannier distribution |ψ0(k)|.

3. Wavepacket propagation

In this section, we discuss the dynamics of wavepackets in the limit of a weak field where the
decay can be neglected, but beyond the tight-binding or single-band approximation. Similar
studies have been carried out by Bouchard and Luban [46] with a view towards electrons in
superlattices.

As an example, we assume a cosine potential, which quite naturally appears for atom
dynamics in optical lattices. The time-dependent Schrödinger equation

ih̄
∂ψ

∂t
= − h̄2

2M

∂
2
ψ

∂x2
+ (V0 cos(2πx/d) + Fx)ψ, (76)
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Figure 8. Bloch oscillations in co-ordinate space for F = 0.005 and h̄ = 3.3806.

can be quite easily solved numerically by means of a split-operator technique [47]. Scaled
variables are used where the values of M and V0 are unity, d = 2π and the value of the scaled h̄
is related to the original values by 2πh̄/d

√
MV0 [5].

The value of the scaled Planck constant was chosen as h̄ = 3.3806 which corresponds
to the experimental situation in [21]. In order to reduce the decay probability, however, the
field was chosen as F = 0.005, which is considerably less than the value of F = 0.0661 in
the experiment (for a theoretical treatment of this strongly decaying system see [48]). As
an initial wavepacket, we use a normalized minimum uncertainty Gaussian wavepacket with
width �x0 = 80π centred at x0 = 0 and zero initial momentum, i.e. about 40 potential wells
are coherently populated initially. In the Kasevich experiment [21], this has been achieved by
means of a (diluted) Bose–Einstein condensate, but it may also be obtained by initial driving
as suggested in [48]. As discussed for the tight-binding model in section 2, the momentum
localization is important for the dynamics. Here we will choose a wavepacket sharply localized
in momentum with �k = 1/(2�x) = 1/(160π).

Figure 8 shows the dynamics in co-ordinate space as a function of time (shown is the
density |ψ(x, t)|2 over two Bloch periods where the bright regions are strongly populated).
At t = 0, the wavepacket splits immediately into three parts: the main part moves in the
negative x-direction, oscillating with the Bloch frequency, a second weaker fraction oscillates in
the opposite direction with a larger amplitude and the third fraction decays towards infinity. The
splitting is repeated after multiples of the Bloch time TB. This behaviour can be described
by two models. First, since the field F is weak, the Wannier states |ψα,m〉 can still be
considered as a basis for the system. Neglecting the interband coupling, this leads to the single
band or, more restrictively, to the tight-binding system described in section 2. However,
the field F destroys the (discrete) translational invariance of the field-free Hamiltonian and
consequently the Bloch bands. The full Wannier–Stark system shows, instead of bands,
discrete resonance energy levels with an imaginary part describing the decay of these states
(see e.g. [5]). We will analyse the Bloch oscillations in both approaches, because each has
advantages in describing certain phenomena.

In the band model, the oscillation of the wavepacket reflects the periodicity of the
band structure. Figure 9 shows the four lowest bands of the field-free system. A wavepacket
localized around κ = 0 moves in quasi-momentum space according to the Bloch equation
(14). The width of the ground band is computed as � ≈ 0.994, which yields according to
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Figure 9. Dispersion relation for a potential V(x) = cos x and h̄ = 3.3806.
Shown are the four lowest bands in the first Brillouin zone. Bandwidths of the
ground and first excited bands are 0.994 and 3.794, and the band gaps are 0.998
and 0.086, respectively.

equation (51) an oscillation over L/d = �/(Fd) ≈ 32 periods in agreement with the numerical
propagation in figure 8. The numerically observed splitting of the wavepacket (see figure 8)
is due to the fact that the initial Gaussian wavepacket has perceptible contributions from
the first and second excited band. If the initial Gaussian is first projected onto the ground
band |ψα=0,n〉, the subsequent time evolution is much clearer as shown on the left-hand
side of figure 10. The projection on the first and second excited band (right-hand side of
figure 10) shows a splitting into two wavepackets. The reason for this is the tiny band gap
of 0.086 at κ = 0 (see figure 9) and so the wavepacket immediately splits into two fractions.
The part belonging to the first excited band has a group velocity

vg = 1

h̄

∂E(κ)

∂κ
(77)

which is positive for κ < 0 and oscillates therefore in the positive direction, whereas the second
excited band has a negative group velocity and decays to −∞, i.e. it tunnels through the upper
bands. The spatial amplitude of the Bloch oscillation in the first excited band is increased by a
factor of 3.8 because of the larger width � = 3.794 (see figure 9 and equation (51)).

Alternatively, the dynamics can be described in terms of the resonance states [5] of the
Wannier–Stark Hamiltonian (1). In this so-called rigged Hilbert space, the Hamiltonian is not
hermitian and so the eigenenergies have an imaginary part that can be interpreted as the decay
probability (for a calculation method of these Wannier–Stark resonances, see e.g. [6]). Due to the
symmetry of the system, the eigenenergies and eigenstates, the so-called Wannier–Stark states,
fulfil the relations

Eα,n = Eα,0 + ndF, �α,n(x) = �α,0(x− nd), α ∈ N0, n ∈ Z. (78)

The complex energies Eα,0 can be decomposed as Eα,0 = Eα,0 − i�α/2. The decay rate of the
resonance is given by �α/h̄. Figure 11 shows for F = 0.005 the most stable state α = 0 for
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Figure 10. Propagation of a Gaussian wavepacket projected on the ground band
(a) and the first plus second excited band (b) initially. The absolute value of the
wavefunction has been plotted.
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Figure 11. Wannier–Stark state �0,0 in co-ordinate (top) and momentum space
(bottom) for F = 0.005, h̄ = 3.3806. Shown are the absolute values and the real
parts.

site n = 0 both in the co-ordinate (top) and momentum representation (bottom). We first note
the close similarity to the results of the tight-binding model in figure 2 which were calculated
for the parameter γ = �/2dF = 15.8. The wavefunction shows fast oscillations with the period
d = 2π of the potential which increases in amplitude from x ≈ 0 to x ≈ −L = −�/F . Note
that (as expected), mainly the potential minima are populated. Note further the change in sign
between the minima on the left turning point of the Bloch oscillation.

The momentum representation ψ00(k), i.e. the Fourier transform of ψ00(x), shown in
figure 12 (bottom) is mainly localized in the Brillouin zone |k| � b/2 = 1/2. One can
see the close similarity to the Wannier functions of the field-free case in figure 7. Since
the other Wannier–Stark states �0,m of the ground ladder are simply shifted by m periods
�0,m(x) = �0,0(x−md), the momentum wavefunctions are multiplied by a phase factor,
�0,m(k) = e−imkd�0,0(k), i.e. |�0,m(k)| = |�0,0(k)|.
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Figure 12. Time evolution of the absolute value of a Gaussian wavepacket in co-
ordinate (top) and momentum space (bottom). The field strength isF = 0.005 and
h̄ = 3.3806. In the momentum representation, the absolute value of the Wannier–
Stark function |�0,0(k)| is shown as a green line. See animation.

For the same parameters, the numerically computed time evolution of an initial Gaussian
wavepacket (width �x0 = 100) centred at x0 = 0 and zero initial momentum is shown in
figure 12 (see also the animation). The motion in co-ordinate space (top) shows a Bloch oscillation
with period TB extending over L/d ≈ 32 periods of the potential. We observe, however, that this
is not a strictly periodic motion, because after a time TB the initial Gaussian is not entirely
reconstructed. As already discussed above, a fraction of the initial wavefunction is transferred to
the upper Wannier–Stark ladders and escapes.

The time evolution of an arbitrary initial state can be conveniently written as

|ψ(t)〉 =
∑
α,m

|�α,m〉〈�α,m|ψ(0)〉 e−iEα,mt/h̄ (79)

with Eα,m = Eα,0 + 2πFm. If the initial state only occupies a single ladder α (which will be quite
generally the ground state if we wait long enough until the contributions from the more unstable
states have decayed) the dynamics simplifies, in particular in the momentum representation,
where (79) can be cast into the form [48]

ψ(k, t) = e−iEα,0t/h̄�α,0(k)
∑
m

cα,m exp(−2πim(k + Ft/h̄))

= e−iEα,0t/h̄�α,0(k, 0)Cα(k + Ft/h̄) = �α,0(k, t)Cα(k + Ft/h̄) (80)

(cf relation (74)). Up to the exponential factor, the dynamics appears in the amplitude modulation
functionCα(k), the discrete Fourier transform of the initial occupation coefficients. It is a periodic
function with period b = 2π/d = 1. Therefore, up to an overall damping due to the imaginary
part of the resonance energy Eα,0, the probability distribution |ψ(k, t)|2 reproduces itself after
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multiples of the Bloch time TB = 2πh̄/dF . The damping factor

|exp(−iEα,0TB/h̄)| = exp(−�α/(2F )) (81)

plays a role if the exponent is of the order unity, which is already the case for α = 1. Therefore the
Gaussian wavepacket is not exactly reproduced after the first Bloch period and the contributions
of the higher bands are already lost.

As an example, let us discuss an initial Gaussian occupation of the Wannier–Stark ladder
α, i.e.

cα,m = g exp(−βm2) (82)

(see also (22)). Using the well-known θ-transformation [49], Cα(k) can be explicitly evaluated
to give

Cα(k) = g

√
π

β

∑
m

exp

(
−π

2

β
(k −mb)2

)
(83)

and the full-time evolution in the single-resonance ladder approximation is given by

ψ(k, t) = g

√
π

β
e−iEα,0t/h̄�α,0(k)

∑
m

exp

(
−π

2

β
(k + Ft/h̄−mb)2

)
. (84)

Therefore, we expect a comb of equidistant equal Gaussians moving with constant width
and speed centred at km(t) = mb− Ft/h̄ which are multiplied by the overall k-distribution
|�α,0(k)|2 of the Wannier–Stark state localized mainly in the interval |k| � b/2. The
momentum peaks outside this region rapidly disappear.At t = 0, the most prominent peak appears
at k = 0. After half of a Bloch period, we have two symmetric peaks at k = ±b/2 whose height is
reduced by the factor |�(k = ±b)/�(k = 0)|. This is exactly what is observed in the numerical
solutions shown in figure 12 and also in the animation. Let us finally note that the average
momentum is zero, both for t = 0 and t = TB/2, due to the symmetry of the distribution at these
times. There is an essential difference, however. In the first case, the momentum distribution peaks
at the centre of the Brillouin zone, whereas in the latter case we have two counterpropagating
waves with momenta at the boundary of the Brillouin zone.

The mean value of the momentum

〈k〉t =
∫ +∞

−∞
dk k|ψ(k, t)|2 (85)

calculated numerically from the wavepacket propagation is shown in figure 13 for the data
of figure 12. The prominent feature of this periodic oscillation is its asymmetry, as already
observed and discussed in experimental measurements of Bloch oscillations of ultracold atoms
[12]–[14]. This asymmetry can be understood by means of the momentum distributions shown
in figure 12 and reflects the shape of the envelope function |�α,0(k)|: if this distribution is
rectangular, 〈k〉t would be a sawtooth function and the smoothed steps in |�α,0(k)| lead to a
corresponding smoothing of the sawtooth. More intuitive, however, is an alternative approach
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Figure 13. The time evolution of the mean value of the momentum 〈k〉 for the
wavepacket propagation shown in figure 12 (solid curve) is well reproduced by
the single-band group velocity (86) (dashed curve).

(see also [12]–[14]): in the single-band model (see section 2.3), the group velocity vg(κ) in (77)
can be calculated from the dispersion relation E(κ) of the ground band shown in figure 9. The
mean momentum is then given by

〈k〉t ≈ Mvg(κ(t))/h̄, κ(t) = κ(0)− Ft/h̄. (86)

This ‘classical’ momentum oscillation, also shown in figure 13, almost perfectly reproduces the
exact quantum result (see also the similar observation in [50]). Let us finally point out that the
underlying physics is exactly what has been discussed in Bloch’s original paper [2].

The time evolution in co-ordinate space is more difficult to describe. By a direct expansion
in Wannier–Stark states

ψ(x, t) =
∑
m

cα,m�α,m(x, t) = e−iEα,0t/h̄
∑
m

cα,m e−imdFt/h̄�α,0(x−md), (87)

we see that the contributions from the Wannier–Stark functions of each well are summed
with a time-dependent phase factor. At time t = 0, we have simply a sum of copies of
the Wannier–Stark functions shown in figure 11 displaced by m potential wells. Assuming
positive weight factors cα,m, this summation is constructive around x = 0 and destructive around
x = −L because the Wannier–Stark function changes sign from one well to the next and the
contributions from term m and m + 1 cancel if the weight coefficients cα,m change slowly. At
time t = TB/2, the phase factors are (−1)m and thus the inverse behaviour is observed: the
interference is destructive around x = 0 and constructive around x = −L.

A different approach may provide some more insight. Starting from (80), we get the
co-ordinate space representation by evaluating the integral

ψ(x, t) = 1√
2π

∫ +∞

−∞
dk eikx�α,0(k, t) Cα(k + Ft/h̄). (88)

Using the convolution theorem, this reduces to

ψ(x, t) =
∫ +∞

−∞
dx′�α,0(x

′, t)C̃α(x− x′, t), (89)
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where C̃α(x, t) is the Fourier transform of Cα(k + Ft/h̄). This Fourier transform can be evaluated
to give

ψ(x, t) = g√
2π

e−iEα,0t/h̄
∑
m

∫ +∞

−∞
dx′�α,0(x

′, 0)

× exp

(
−16β

d2
(x− x′)2 + i(mb− Ft/h̄)(x− x′)

)
. (90)

We see that the time-developed state ψ(x, t) consists of a superposition of windowed Fourier or
Gabor transformations

�α(x, k) = 1√
2π

∫ +∞

−∞
dx′�α,0(x

′, 0) exp

(
−16β

d2
(x− x′)2 + ik(x− x′)

)
(91)

which describe the local wavenumber spectrum of �α,0(x
′, 0) at x′ = x:

ψ(x, t) = g e−iEα,0t/h̄
∑
m

�α(x, km(t)), km(t) = mb− Ft/h̄. (92)

Around x = 0, the �α,0 is non-oscillatory, i.e. only small values of k contribute, contrary to
the region x ≈ L, where the dominant wavenumbers are ±b/2, i.e. we have two
counterpropagating waves of the same amplitude, which yield a standing wave with period
2π/(b/2) = 2d. The total wavefunction at time t is a superposition of these contributions from
all km(t) and we obtain a time-dependent scanning of the underlying Wannier–Stark function
�α,0(x, 0). Because of km(t + TB) = km−1(t) this motion is periodic.

4. Concluding remarks

In this paper, we have presented numerical studies of Bloch oscillations in one-dimensional
systems where the force F is weak and does not depend explicitly on time. Even in this simple
set-up, the dynamics is quite involved as discussed above. A feature of particular interest is the
dispersionless periodic oscillation of a wavepacket with an amplitude L = �/F and a period
TB = 2πh̄/dF , at least in the limit of small fields F . For stronger fields, the coupling between
the bands is enhanced and an increasing fraction of the wavepacket moves in higher bands
and finally escapes. In this regime, a description in terms of Wannier–Stark resonance states
[5] is more adequate. An application to a situation with an intermediate field F can be found
in the experiment [21] where a pulsed coherent emission of a Bloch-oscillating Bose–Einstein
condensate was observed (see also the theoretical analysis [48]).

If we allow for an additional time-periodic driving many other phenomena occur.An example
is the classically chaotic motion with corresponding signatures in the quantum case, as for
instance statistical properties of the decay rates or resonance widths which can be described by
random matrix theory (see the review [5] and references therein). Other interesting questions are
related to transport phenomena. Let us, for instance, have a brief look at an alternating field F
where we change sign after half of the first Bloch period, i.e. at the left-hand-side turning point
(cf with figure 12). This will invert the direction of the Bloch oscillation and the wavepacket
will continue its motion in the same direction as in the first half-period. If we continue to flip the
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Figure 14. Propagation of a Gaussian wavepacket with a TB-periodically flipped
field |F | = 0.005.

sign of F after each half-period, the resulting motion will be in the same direction all the time.
Figure 14 shows a numerical propagation of a Gaussian wavepacket under the action of such a
TB periodic force.

Each time the boundary of the Brillouin zone is met, a small fraction of the wavepacket
escapes. The main part of the wavepacket moves, but is almost dispersionless. Estimating the
transport velocity v, we obtain

v = 2L

TB
= �d

πh̄
(93)

which is independent of the magnitude |F | of the force. The direction of the transport depends
only on the initial sign of F . This is clearly a non-intuitive behaviour which will be analysed in
future studies of transport processes in driven Wannier–Stark systems.

Even more interesting is the dynamics of Wannier–Stark systems in two (and more) space
dimensions. A few recent studies have shown a sensitive dependence of the motion (dispersion
and decay characteristics) on the direction of the field with respect to the periodic lattice. In
addition, an almost dispersionless motion of wavepackets has been found. This will be discussed
in a subsequent paper [51].
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