These problems are due Friday, November 16.

1. Find the Dirichlet Green’s function for the inside of an infinitely long cylinder without \(z \) dependence using the eigenfunction method.

(a) Show that the eigenfunctions can be chosen to be

\[
\Psi_{mn}(r, \theta) = C_{mn} J_m \left(\frac{x_{mn}}{R} r \right) e^{im\theta}
\]

(b) Find the resulting Green’s function.

The next three problems ask you to find the Dirichlet Green’s function for the inside of the “soup can” defined by the surfaces \(z = 0, \ z = L, \ r = a \). You should be able to verify the following forms

2.

\[
G_D(r, r') = 4 \sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} e^{im(\theta - \theta')} J_m \left(\frac{x_{mn}}{a} r \right) J_m \left(\frac{x_{mn}}{a} r' \right)
\]

\[
\times \sinh \left[\frac{x_{mn}}{a} z \right] \sinh \left[\frac{x_{mn}}{a} (L - z) \right]
\]

3.

\[
G_D(r, r') = 4 \sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} e^{im(\theta - \theta')} \sin \left(\frac{n\pi z}{L} \right) \sin \left(\frac{n\pi z'}{L} \right)
\]

\[
\times \left[I_m \left(\frac{n\pi a}{L} \right) K_m \left(\frac{n\pi r}{L} \right) - K_m \left(\frac{n\pi a}{L} \right) I_m \left(\frac{n\pi r}{L} \right) \right]
\]
4.

\[G_D(r, r') = \frac{8}{L^2 \alpha^2} \sum_{m=-\infty}^{\infty} \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} e^{im(\theta - \theta')} \sin \left(\frac{k \pi z}{L} \right) \sin \left(\frac{k \pi z'}{L} \right) \frac{J_m \left(\frac{x_{mn} r}{a} \right) J_m \left(\frac{x_{mn} r'}{a} \right)}{\left(\frac{x_{mn} a}{a} \right)^2 + \left(\frac{k \pi L}{L} \right)^2} f_{m+1}^2 (x_{mn}) \]

As you can guess from the form of the solutions, 2. and 3. are done with “patchwork,” and 4. is done with an eigenfunction expansion.