Problem Set #6

A. W. Stetz

November 21, 2007

These problems are due Friday, November 30.

1. A sphere of dielectric material with permitivity ϵ and radius a is placed in an initially uniform electric field. Find the resulting electric field inside and outside the sphere. Note that this is similar to the problem done in class with a point charge. In this case the answer is much simpler.

Draw two sketches: one showing the lines of force corresponding to E, the other corresponding to D.

Calculate the polarization surface charge on the sphere.

2. The space $z > 0$ is filled with matter of dielectric constant ϵ_1, and the space $z < 0$ with matter of dielectric constant ϵ_2. A charge q is at $z = d$ on the z-axis. Show that for $z > 0$ the field can be calculated as if it were due to a charge of magnitude q/ϵ_1 at $z = d$ plus an image charge q' at $z = -d$, and for $z < 0$ the field is as if it were due to a charge q'' at $z = d$. Find q' and q''.

3. Two long straight parallel wires carry current I in opposite directions. The wires are separated by a distance a. To make life easier for the grader (me) let’s all assume that the wires run in the x direction and lie in the x-y plane. Take the origin of your coordinate system to lie halfway between the two wires. Find A in cartesian coordinates.