Summary of canonical transformations

A. Stetz

February 14, 2012

- Lagrangian mechanics

\[L(q, \dot{q}) = T - V \quad \text{no velocity-dependent forces} \]

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_k} \right) - \frac{\partial L}{\partial q_k} = 0 \]

- Hamiltonian dynamics – We always assume that energy is conserved and there is no explicit time dependence in the Hamiltonian.

\[H(q, p) = \sum_{k=1}^{n} p_k \dot{q}_k - L \]

\[p_k \equiv \frac{\partial L}{\partial \dot{q}_k} \quad \dot{q}_k = \frac{\partial H}{\partial p_k} \quad \dot{p}_k = -\frac{\partial H}{\partial q_k} \]

- Canonical transformations. The idea is to find a new set of dynamic variables in terms of which the problem becomes trivial. In general the Hamiltonian is transformed according to the following scheme.

\[K(Q_1, \ldots, Q_n, P_1, \ldots, P_n) = H(q_1(Q, P), \ldots, q_n(Q, P), p_1(Q, P), \ldots, p_n(Q, P)) + \frac{\partial F}{\partial t} \]

We always use \(F = F_2(q, P) \), that is to say a function of the old coordinates and the new momenta. In this case

\[p_i = \frac{\partial F_2}{\partial q_i} \quad Q_i = \frac{\partial F_2}{\partial P_i} \]

These will be coupled equations. They can be combined in such a way as to express the new variables as functions of the old or vice versa. Unfortunately, the \(F_2 \) generating function gets called \(S \) or \(W \) depending on context.

There are several strategies for transforming the Hamiltonian.
Hamilton’s principal function. The idea is to make \(K = 0 \) so that \(\dot{Q} = \dot{P} = 0 \). Then \(P \equiv \alpha \) is a constant of motion, and \(Q \equiv \beta \) depends on the initial conditions. The Hamiltonian-Jacobi equation in one dimension is then

\[
H \left(q, \frac{\partial S}{\partial q} \right) + \frac{\partial S}{\partial t} = 0
\]

In more than one dimension we assume separability, i.e.

\[
S = \sum_i W_i(q_i) - \alpha t
\]

finally

\[
S = S(q_1 \cdots q_n; \alpha_1 \cdots \alpha_n; t)
\]

where all the \(\alpha_i \)'s are independent constants of motion.

Hamilton’s characteristic function. Now \(K = \alpha \). Naturally \(\alpha \) is the total energy and thus a constant of motion. In one dimension

\[
K(P) = H \left(q, \frac{\partial S}{\partial q} \right) = E = P \equiv \alpha = \text{constant}
\]

\[
S = S(q, P) \quad p = \frac{\partial S}{\partial q} \quad Q = \frac{\partial S}{\partial P} = \frac{\partial S}{\partial \alpha} \equiv \beta
\]

\[
\dot{\beta} = \frac{\partial K}{\partial \alpha} = 1 \quad \beta = t - t_0
\]

In several dimensions

\[
S = \sum_k W_k(q_k, \alpha_1, \cdots, \alpha_n) \equiv W
\]

\[
K = H \left(q, \frac{\partial W}{\partial q} \right) = E \equiv \alpha_1
\]

Separate variables and identify the other constant \(P_k \equiv \alpha_k \).

\[
\dot{Q}_k = \frac{\partial K}{\partial P_k} = \frac{\partial K}{\partial \alpha_k} \equiv \dot{\beta}_k = \delta_k \quad \beta_k = \frac{\partial W}{\partial \alpha_k}
\]

These are the equations of motion.

Action-angle variables. The philosophy is similar to that above except the canonical momentum is chosen to be the action rather than the total energy.

\[
K(I) = E = H \left(q, \frac{\partial S}{\partial q} \right)
\]
\[I = \frac{1}{2\pi} \oint p \, dq \quad S = \int p \, dq \]

\[\psi = \frac{\partial W}{\partial I} \quad p = \frac{\partial W}{\partial q} \]

\[\dot{i} = -\frac{\partial}{\partial \psi} K(I) = 0 \quad \dot{\psi} = \frac{\partial}{\partial I} K(I) = \omega(I) \]

In several variables

\[W(q_1, \ldots, q_n; I_1, \ldots, I_n) = \sum_j W_j(q_j; I_1, \ldots, I_n) \]

\[I_i = \frac{1}{2\pi} \oint p_i \, dq_i \]

\[\psi_i = \frac{\partial W}{\partial I_i} \quad \dot{\psi}_i = \frac{\partial K(I_1, \ldots, I_n)}{\partial I_i} = \omega_i \]

The \(\dot{\psi} \)'s are all constant, so the \(\psi \)'s are all linear functions of time as in the one-dimensional case.