Integration in Electrostatics with a Computational Perspective

David Roundy
Eric Krebs Jeff Schulte
The Context: A computational lab for the Paradigms

The class
- Covers same physics content as the junior-year Paradigms.
- 1 credit, meets 3 hours per week in-class, no homework.
- Uses pair programming, python with matplotlib and numpy.
- No example code provided to students: they Google for help.
- Begins with six weeks of electrostatics.

The students
- This was an elective course.
- We had 8 students this Fall.
- Most had previous computational course with visual python.
Introduction

▶ Setting up integrals in electrostatics is challenging for students.

▶ These integrals are very different from what is taught in calculus.

\[
V(\vec{r}) = \int \frac{k \, dq'}{|\vec{r} - \vec{r}'|} \quad E(\vec{r}) = \int k\frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} \, dq'
\]

Conclusions

▶ “Chopping and adding”\(^1\) is made explicit in computation.

▶ Once you have written down an integral, the problem becomes easy.

\(^1\)For more information, attend Corinne’s talk in this session one hour ago.
Six weeks of electrostatics

Schedule

(remember: 3 hours per week)

<table>
<thead>
<tr>
<th>Week 1: Potential of four point charges</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Writing functions in python.</td>
</tr>
<tr>
<td>▶ Visualizing a scalar field.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 2-3: Potential of a square of surface charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Programming loops.</td>
</tr>
<tr>
<td>▶ Viewing integration as “chopping and adding.”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 4-6: Electric field of a solid cylinder of charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Integrating a vector quantity.</td>
</tr>
<tr>
<td>▶ Using cylindrical coordinates.</td>
</tr>
<tr>
<td>▶ Visualizing a vector field.</td>
</tr>
</tbody>
</table>

For each project pairs of students...

- ... write down function on paper in math notation.
- ... write python function to evaluate the field.
- ... visualize the field.
- ... present their code to the class.
Week 2 and 3: Potential of a square of surface charge

- 1/2 hour writing down the integral on paper.
- Students struggled with getting dimensions correct (omitting $\Delta x \Delta y$)
- Students struggled with creating loops.
- Ended with students presenting their code to the class.

Students reported learning to name their variables with “physics” names.
Week 2 and 3: Potential of a square of surface charge

Math solution

\[V(\vec{r}) = \int_{-L/2}^{L/2} \int_{-L/2}^{L/2} \frac{k\sigma dx' dy'}{\sqrt{(x - x')^2 + (y - y')^2 + z^2}} \]

Student code (distance → dist)

```python
def V(x,y,z):
    dx = 0.01
    dy = dx
    v_total = 0
    for xp in numpy.arange(-length/2, length/2, dx):
        x_dist = (x - xp)**2
        for yp in numpy.arange(-length/2,length/2,dy):
            y_dist = (y - yp)**2
            z_dist = (z)**2
            dist = (x_dist**2 + y_dist**2 + z_dist**2)**.5
            v = k * sigma * dx**2 / dist
            v_total += v
    return v_total
```
Week 2 and 3: Potential of a square of surface charge

Math solution

\[V(\vec{r}) = \int_{-L/2}^{L/2} \int_{-L/2}^{L/2} \frac{k\sigma \, dx' \, dy'}{\sqrt{(x - x')^2 + (y - y')^2 + z^2}} \]

Student code (distance → dist) (comments mine)

def V(x,y,z):
 # distinction between r and r'
 dx = 0.01
 dy = dx
 v_total = 0
 for xp in numpy.arange(-length/2, length/2, dx):
 x_dist = (x - xp)**2
 for yp in numpy.arange(-length/2,length/2,dy):
 y_dist = (y - yp)**2
 z_dist = (z)**2
 dist = (x_dist**2 + y_dist**2 + z_dist**2)**.5
 v = k * sigma * dx**2 / dist
 v_total += v
 return v_total
Week 2 and 3: Potential of a square of surface charge

Math solution

\[
V(\vec{r}) = \int_{-L/2}^{L/2} \int_{-L/2}^{L/2} \frac{k\sigma dx' dy'}{\sqrt{(x - x')^2 + (y - y')^2 + z^2}}
\]

Student code (distance → dist) (comments mine)

```python
def V(x, y, z):
    # distinction between r and r'
    dx = 0.01
    # limits of integration
    dy = dx
    v_total = 0
    for xp in numpy.arange(-length/2, length/2, dx):
        x_dist = (x - xp)**2
        for yp in numpy.arange(-length/2, length/2, dy):
            y_dist = (y - yp)**2
            z_dist = (z)**2
            dist = (x_dist**2 + y_dist**2 + z_dist**2)**.5
            v = k * sigma * dx**2 / dist
            v_total += v
    return v_total
```

Week 2 and 3: Potential of a square of surface charge

Math solution

\[
V(\vec{r}) = \int_{-L/2}^{L/2} \int_{-L/2}^{L/2} \frac{k\sigma dx' dy'}{\sqrt{(x - x')^2 + (y - y')^2 + z^2}}
\]

Student code (distance → dist) (comments mine)

```python
import numpy

def V(x, y, z):
    # distinction between r and r'
    dx = 0.01
    # limits of integration
    dy = dx
    v_total = 0
    for xp in numpy.arange(-length/2, length/2, dx):
        x_dist = (x - xp)**2
        for yp in numpy.arange(-length/2,length/2,dy):
            y_dist = (y - yp)**2
            z_dist = (z)**2
            dist = (x_dist**2 + y_dist**2 + z_dist**2)**.5
            v = k * sigma * dx**2 / dist
            v_total += v
    return v_total
```

\[
\frac{6}{7}
\]
Week 2 and 3: Potential of a square of surface charge

Math solution

\[V(\vec{r}) = \int_{-L/2}^{L/2} \int_{-L/2}^{L/2} \frac{k\sigma dx' dy'}{\sqrt{(x - x')^2 + (y - y')^2 + z^2}} \]

Student code (distance → dist) (comments mine)

```python
def V(x,y,z):
    # distinction between r and r'
    dx = 0.01
    # limits of integration
    dy = dx
    # |r-r’|
    v_total = 0
    # a little bit of charge
    for xp in numpy.arange(-length/2, length/2, dx):
        x_dist = (x - xp)**2
        for yp in numpy.arange(-length/2,length/2,dy):
            y_dist = (y - yp)**2
            z_dist = (z)**2
            dist = (x_dist**2 + y_dist**2 + z_dist**2)**.5
            v = k * sigma * dx**2 / dist
            v_total += v
    return v_total
```
Week 2 and 3: Potential of a square of surface charge

Math solution

\[V(\vec{r}) = \int_{-L/2}^{L/2} \int_{-L/2}^{L/2} \frac{k \sigma dx' dy'}{\sqrt{(x - x')^2 + (y - y')^2 + z^2}} \]

Student code (distance → dist) (comments mine)

```python
def V(x,y,z):
    # distinction between r and r'
    dx = 0.01
    # limits of integration
    dy = dx
    # |r-r’|
    v_total = 0
    # a little bit of charge
    for xp in numpy.arange(-length/2, length/2, dx):
        x_dist = (x - xp)**2
        for yp in numpy.arange(-length/2,length/2,dy):
            y_dist = (y - yp)**2
            z_dist = (z)**2
            dist = (x_dist**2 + y_dist**2 + z_dist**2)**.5
            v = k * sigma * dx**2 / dist
            v_total += v  # add up the little bits of potential
    return v_total
```
Introduction

▶ Setting up integrals in electrostatics is challenging for students.

▶ These integrals are very different from what is taught in calculus.

\[V(\vec{r}) = \int \frac{k \ dq'}{|\vec{r} - \vec{r}'|} \quad \vec{E}(\vec{r}) = \int k \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} dq' \]

Conclusions

▶ “Chopping and adding”\(^2\) is made explicit in computation.

▶ Once you have written down an integral, the problem becomes easy.

\(^2\)For more information, attend Corinne’s talk in this session one hour ago.
Week 1: Potential of four point charges

- Ended with student presentations of their code.

Students reported learning to “get the little parts done [and tested] first,” and reported learning a variety of programming concepts (if/else, arrays, meshgrid, etc.).
Week 4-6: Electric field of solid cylinder of charge

- About 1 1/2 hours writing down the integral on paper.
- Students struggled with cylindrical coordinates.
- Students struggled with integrating a vector quantity.
- Ended with students studying and presenting the code of another pair.
Week 4-6: Electric field of solid cylinder of charge

\[
E_x(r') = \int_{-L/2}^{L/2} \int_0^{2\pi} \int_0^R k\rho \frac{x - r' \cos \phi'}{\left(\sqrt{r^2 + r'^2 - 2rr' \cos \phi' + (z - z')^2}\right)^3} r' dr' d\phi' dz'
\]

Student code (I cut a print statement)

```python
def E_x(x,y,z):
    # Cartesian coordinates for position, computes Ex
    dr_p = 0.01
    E_x = 0
    r_p = 0
    r = (x**2 + y**2)**(1/2) # Computes cylindrical r coordinate (mixed coordinates)
    dphi_p = np.pi/50
    phi_p = 0
    dz_p = 0.01
    z_p = -length/2 # Uses while loops rather than for loops...
    # ...this scatters the limits of integration
    while z_p < length/2:
        while phi_p < 2*np.pi:
            while r_p < radius:
                r_minus_r_p = (r**2 + r_p**2 - 2 * r * r_p * np.cos(phi_p) + (z - z_p)**2)**(1/2)
                dE_x = (((x - r_p * np.cos(phi_p))*r_p)* dr_p * dphi_p * dz_p) / r_minus_r_p**3
                E_x = E_x + dE_x
                r_p = r_p + dr_p # This pair oddly broke up the tiny chunk of volume
                phi_p = phi_p + dphi_p # They entirely omit the charge density and k
                phi_p = 0
                z_p = z_p + dz_p
            r_p = 0
        phi_p = phi_p + dphi_p
    return E_x
```

\(10 / 7\)
Week 4-6: Electric field of solid cylinder of charge

Math solution

\[
E_x(r) = \int_{-L}^{L} \int_0^{2\pi} \int_0^{R} k \rho \, \frac{r \cos \phi - r' \cos \phi'}{(r^2 + r'^2 - 2rr' \cos \phi' + (z - z')^2)^{3/2}} \, r' \, dr' \, d\phi' \, dz'
\]

Student code (I broke a very long line of code)

```python
def Ex(r,phi,z):
    # Cylindrical coordinates for position, find Ex
    exfield = 0
    # They entirely omit the charge density and k
    for rp in np.arange(0,R,drp):
        # Very oddly broke up the tiny chunk of volume
        for phip in np.arange(0,2*np.pi,dphip):
            for zp in np.arange(-L,L,dzp):
                exfield = exfield + ((rp*r*np.cos(phi)-rp**2*np.cos(phip))/
                                      (r**2+rp**2-2*r*rp*np.cos(phi-phip)+(z-zp)**2)**(3/2))*drp*dphip*dzp
    return exfield
```