
PH 424 Separation of Variables: The diffusion equation
Date: May 7, 2019

Consider the temperature of a one-dimensional metal rod of length L given by the function
u(x, t). The temperature of this rod is given by the one dimensional diffusion equation
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If both ends of the metal rod are insulated, then the temperature will obey the following
boundary conditions. Why?

∂u(x, t)

∂x

∣∣∣∣
x=0

= 0 (2)

∂u(x, t)

∂x

∣∣∣∣
x=L

= 0 (3)

This can be written more compactly as

u′(0, t) = 0 (4)

u′(L, t) = 0 (5)

1. Use separation of variables to find an analytical solution for u(x, t). Specify how
you chose or identified your separation constants.

The separation of variables procedure for partial differential equations (PDEs) begins
by making the clever ansatz.

ANSATZ: u(x, t) = X(x)T (t) (6)

which says that the dependence of the temperature u(x, t) on the independent variables
can be written as the product of a function that depends only on x with a function
that depends only t. If we plug this back into equation (1) we find that our ansatz
significantly simplifies the differential equation.
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Notice how the partial derivatives only apply to the function of the corresponding
independent variable. Now we can divide both sides by X(x)T (t) so that the equation
becomes
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At this point we can see that all of the t dependence is on the left hand side of the
equation and all of x dependence is on the right. Furthermore, because X(x) and T (t)
are equations of only one variable, what were partial derivatives (∂/∂t, ∂2/∂x2) are
now ordinary derivatives (d/dt, d2/dx2).

In summary, we have reformulated the PDE as

1

α T (t)

dT (t)

dt
=

1

X(x)

d2X(x)

dx2
(10)

Now comes the “say some magic” part Corinne talked about in class. Imagine we fix
x to be some value. Then, the right hand side of equation (10) is constant. If we then
allow t to vary, the function T (t) will certainly change, but the combination of T with
its derivative on the L.H.S. must remain constant because we know that the R.H.S. is
constant. Let’s call this constant A. Then we have

1

α T (t)

dT (t)

dt
= A (11)

1

X(x)

d2X(x)

dx2
= A (12)

Some rearranging gives

dT (t)

dt
= αA T (t) (13)

d2X(x)

dx2
= A X(x) (14)

We have turned a partial differential equation into two homogeneous ordinary differ-
ential equations with constant coefficients!

Recall that our boundary conditions were given with respect to x. Therefore, we will
solve equation (14) before we solve the tempting first-order time equation.

ANSATZ: X(x) = erx (15)

plug into 14:
d2

dx2
erx − Aerx = 0 (16)

(r2 − A)erx = 0 (17)

r2 − A = 0 (18)

r = ±
√
A (19)

⇒X(x) = c+e
√
Ax + c−e

−
√
Ax (20)

Now that we have found a functional form for X(x) we can apply our boundary con-
ditions.

u′(0, t) = X ′(0)T (t) = 0 (21)

u′(L, t) = X ′(L)T (t) = 0 (22)
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These boundary conditions need to be true for all values of t, therefore:

X ′(0) = 0 (23)

X ′(L) = L (24)

Applying (23) to (20) gives

X ′(x) =
√
Ac+e

√
Ax −

√
Ac−e

−
√
Ax (25)

X ′(0) =
√
Ac+ −

√
Ac− (26)

⇒ c+ − c− = 0 (27)

c+ = c− (28)

⇒ X(x) = c+e
√
Ax + C+e

√
Ax (29)

In class we tried to use this solution to match the boundary condition for the case
where A > 0. This is impossible as the derivative becomes a sinh function that only
takes the value 0 at the origin. What happens if we let the constant be A < 0?

X(x) = c+e
−i
√
|A|x + c+e

i
√
|A|x (30)

= c+ cos(
√
Ax) (31)

Where in the last step I have identified the combination of complex exponentials in
(30) as a cosine and absorbed the extra factor of 2 into the constant c+. Now we can
try to apply the second boundary condition (24).

X ′(L) = −
√
|A|c+ sin(

√
|A|L) = 0 (32)

sin(
√
|A|L) = 0 (33)

⇒
√
|A|L = nπ (34)

|A| = n2π2

L2
(35)

A = −n
2π2

L2
(36)

As cos(−θ) = cos(θ) negative values of n are redundant so that n = 0, 1, 2, 3, ... We
have found that

X(x) = c+ cos
(nπx
L

)
(37)

A = −n
2π2

L2
(38)

Now that we know A, we can solve the time equation (13). It is

d

dt
T (t) = −απ

2n2

L2
T (t) (39)
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We an use the same ansatz to solve this differential equation.

ANSATZ: T (t) = est (40)

d

dt
est +

απ2n2

L2
est = 0 (41)(

s+
απ2n2

L2

)
est = 0 (42)

s = −απ
2n2

L2
(43)

⇒ T (t) = d e−
απ2

L2 t (44)

Where d is a constant to be determined by the initial conditions.

Let’s pause and reflect on what we have found so far. After performing the separa-
tion of variables procedure on the diffusion equation we found that it reduced to two
ordinary, homogeneous differential equations with constant coefficients. Each of these
differential equations is independently equal to some constant A.

We chose to solve the second ODE (eqn 14) first because our boundary conditions are
given in terms of x. At this point, A was still a free parameter. Solving this ODE with
the boundary conditions determined the value of A. Knowing this constant, we then
solved the equation for T (t). We can now write the full solution as

u(x, t) = X(x)T (t) = β cos
(nπx
L

)
e−

αn2π2

L2 t (45)

Note that I have combined the constants d and c+ into one constant called β. Now
we are almost done. We know everything in the equation for u(x, t) except for the
constant β. It must be determined by the initial conditions.

Before we move on though, we have one more observation to make. Both of the
derivative operators in the diffusion equation (1) are linear because differentiation is
linear. This means that if we take a linear combination of solutions for different values
of n, the diffusion equation will still be satisfied. Therefore the most general way we
can write the temperature function would be to include a term for each possible value
of n.

u(x, t) =
∞∑
n=0

βn cos
(nπx
L

)
e−

αn2π2

L2 t (46)

The fact that we have this combination of terms means that we can now write u(x, t)
to match any reasonably well behaved initial conditions as we will see in the next part
of the problem.

2. Suppose you know the initial temperature of the rod has the functional form
u(x, 0) = 300+28 cos3

(
πx
L

)
Kelvin. Find a closed form solution for the temperature
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u(x, t) for all t > 0. Do some sense-making about your solution.

First let’s graph this initial temperature distribution to see what it looks like.
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Figure 1: The initial temperature configuration of the system with L = 1

Setting t = 0 in (45) gives us

u(x, 0) =
∞∑
n=0

βn cos
(nπx
L

)
(47)

To be able to expand (46) to match (45), we want an orthogonality relationship between
the cosine terms. We will make a guess based on our experience from Fourier series
and check:

L∫
0

cos
(nπx
L

)
cos
(mπx

L

)
dx =

1

4

L∫
0

(
einπx/L + e−inπx/L

) (
eimπx/L + e−imπx/L

)
dx (48)

=
1

4

L∫
0

ei(n+m)πx/L + e−i(n+m)πx/L (49)

+ ei(n−m)πx/L + e−i(n−m)πx/Ldx (50)

=
1

2

L∫
0

{
cos
(
(n+m)πx/L

)
+ cos

(
(n−m)πx/L

)}
dx

(51)
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=
1

2

{ L

(n+m)π
sin
(

(n+m)πx/L
)

+
L

(n+m)π
sin
(

(n−m)πx/L
)}∣∣∣∣L

0

(52)

=
1

2

{ L

(n+m)π
sin
(

(n+m)π
)

+
L

(n+m)π
sin
(

(n−m)π
)}

(53)

Now we have two cases to explore. The first is for n 6= m. Since n,m are both integers,
then certainly n+m and n−m are both integers and therefore

sin
(
(n+m)π

)
= sin

(
(n−m)π

)
= 0 (54)

⇒
∫ L

0

cos(nπx/L) cos(mπx/L)dx = 0 (55)

If n = m, then the first term in (53) is zero but the second term becomes 0
0
. If we use

L’Hopital’s rule to evaluate, then the equation becomes

L∫
0

cos2(nπx/L)dx = lim
(n−m)→0

1

2

L

(n+m)π
sin
(
(n−m)π

)
(56)

=
L

2
lim

(n−m)→0

d
d(n−m)

sin
(
(n−m)π

)
d

d(n−m)
(n−m)π

(57)

=
L

2
lim

(n−m)→0

π cos
(
(n−m)π

)
π

(58)

=
L

2
(59)

Lastly, because n = 0 is also a valid choice, we have an exception to (59) given by

L∫
0

cos2(0)dx =

L∫
0

dx = L (60)

Thus, we conclude that

L∫
0

cos(nπx/L) cos(mπx/L)dx =


L
2
δm,n for n,m 6= 0

L for n = m = 0
(61)

and therefore the cosines are orthogonal. In recognition of this oddity for n = 0, let’s
rewrite (47) in anticipation of the expansion we want to perform for u(x, 0).

u(x, 0) =
β0
2

+
∞∑
n=1

βn cos
(nπ
L
x
)

(62)

Our goal now is to solve for the βn coefficients in the expansion of our initial condition.
We know how combinations of cosines behave under the integration rule (61) so we can
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solve for βn’s using what’s called Fourier’s trick. First multiply both sides of (62) by
an arbitrary cosine term and then integrate over the rod.

u(x, 0) cos
(mπ
L
x
)

=

[
β0
2

+
∞∑
n=1

βn cos
(nπ
L
x
)]

cos
(mπ
L
x
)

(63)∫ L

0

u(x, 0) cos
(mπ
L
x
)

=

∫ L

0

β0
2

cos
(mπ
L
x
)
dx (64)

+

∫ L

0

∞∑
n=1

βn cos
(nπ
L
x
)

cos
(mπ
L
x
)
dx (65)

=
β0
2

∫ L

0

cos

(
0π

L
x

)
cos
(mπ
L
x
)
dx (66)

+
∞∑
n=1

βn

∫ L

0

cos
(nπ
L
x
)

cos
(mπ
L
x
)
dx (67)

=
β0
2
Lδ0,m +

∞∑
n=1

βn
L

2
δn,m (68)

=
L

2

∞∑
n=0

βnδn,m =
L

2
βm (69)

⇒ βm =
2

L

∫ L

0

u(x, 0) cos
(mπ
L
x
)
dx (70)

At this point, we could solve the integral in (70) in order to determine the coefficients
for the expansion in (62). In some cases, it is more convenient to try and manipulate
the initial condition so that the coefficients can be identified by inspection. For us this
amounts to using some trigonometry to rewrite the cosine cubed term.

recall: cos3(β) =
1

4

(
3 cos(β) + cos(3β)

)
(71)

⇒ u(x, 0) = 300 + 21 cos
(πx
L

)
+ 7 cos

(
3πx

L

)
(72)

⇒


β0 = 600

β1 = 21

β3 = 7

(73)

Therefore, the closed form solution for the temperature given the initial conditions is

u(x, t) = 300 + 21 cos
(πx
L

)
e−

απ2

L2 t + 7 cos

(
3πx

L

)
e−

α9π2

L2 t (74)

...and there we have it! Let’s end with a little sense making. At t = 0 we have a
temperature distribution along the rod that matches the initial conditions shown in
figure 1. The time dependence is a decaying exponential. This matches our physical
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intuition because we know that without a source or sink for heat transfer to the rod,
we expect the temperature should decay to some equilibrium value after a period of
time.

3. Plot your solution in Mathematica for several different for several different in-
stants in time including t=0.

Figure 2 shows the temperature distribution at several different points in time.
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Figure 2: Graphs of the temperature distribution along the rod shown at various times starting at
t = 0. For this graph, I set α = 1, and L = 1

This does exactly what we said we expect after looking at equation (70)! The distri-
bution tends towards an equilibrium value. Of course, the speed at which this occurs
depends highly on the value of α. Because α = 1 for this graph, the decay is very
quick.
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