01/07 
No class: comprehensive exam. 



01/09 
Motion in central potentials. (notes) 



01/11 
Twobody problem. (notes)Orbital angular momentum.  HW 1 (solutions) 


01/14 
Ladder operators. (notes) 
HW 2 (solutions) 
WS 1 
PRL2004 for HW2 
01/16 
Rotation of diatomic molecules.(notes)


WS 2 

01/18 
Hydrogen atom.(notes) 
HW 3 (solutions) 
WS 3 

01/21 
Martin Luther King day 

01/23 
Hydrogenlike atoms and ions.(notes) 
HW 4 (solutions) 
WS 4 
01/25 
Other examples of particles in sphericallysymmetric potentials. (notes) 
 WS 5  
01/28 
Angular momentum and rotations. (notes) 

WS 6 

01/30 
Rotations in the state space. (notes) 
HW 5(solutions) 
WS 7 

02/01 
Spin. Tensor products. (notes) 

WS 8 

02/04 
Tensor products (ctd). Rotations in the spin space.(notes) 

WS 9 

02/06 
Representations of the rotation operator.(notes) 

WS 10 

02/08 
Spherical harmonics as rotation matrices. (notes) 

WS 11 

02/11 
Addition of angular momenta: introduction.(notes) 

WS 12 

02/13 
Examples of addition of angular momenta.(notes) 
HW 6(solutions) 
WS 13 

02/15 
Addition of angular momenta: general formalism.(notes) 

WS 14  
02/18 
Midterm(solutions) 

02/20 
Rotation matrices for coupling two angular momenta.(notes) 
HW 7(solutions) 


02/22 
Scalar, vector and tensor operators.(notes) 

WS 15 

02/25 
Cancelled: weather. Scalar, vector and tensor operators(ctd). Properties of spherical tensors. 
 

02/27 
Cancelled: weather. 
HW 8(solutions)  

03/01 
Properties of spherical tensors. (notes) 

WS 16 

03/04 
Properties of spherical tensors. WignerEckart theorem.(notes) 

WS 17 

03/06 
WignerEckart theorem (ctd).Timeindependent perturbation theory: nondegenerate case.(notes) 

WS 18 

03/08 
Timeindependent perturbation theory: nondegenerate case. 
HW 9(solutions) 
WS 19 

03/11 
Timeindependent perturbation theory: nondegenerate vs degenerate case.(notes) 

WS 20 

03/13 
Applications of timeindependent perturbation theory: fine structure of the hydrogen atom.(notes) 

WS 21 

03/15 
Applications of timeindependent perturbation theory: hyperfine structure of the hydrogen atom.(notes) 



