Ph 652   Quantum Mechanics II

Physics Department, Oregon State University

Winter 2019 term

Instructor: Oksana Ostroverkhova (Wngr 413)
Lectures: MWF 9am, Weniger 304
Course Information
(pdf file) 

Final Exam   (Tue, 03/19, 12 PM, Weniger 304)      
DateLectures AssignmentsNotes
01/07 No class: comprehensive exam.      
01/09 Motion in central potentials. (notes)      
01/11 Two-body problem. (notes)Orbital angular momentum. HW 1 (solutions)    
01/14 Ladder operators. (notes) HW 2 (solutions) WS 1 PRL2004 for HW2
01/16 Rotation of diatomic molecules.(notes)   WS 2  
01/18 Hydrogen atom.(notes) HW 3 (solutions) WS 3  
01/21 Martin Luther King   day  
01/23 Hydrogen-like atoms and ions.(notes) HW 4 (solutions) WS 4
01/25 Other examples of particles in spherically-symmetric potentials. (notes)   WS 5  
01/28 Angular momentum and rotations. (notes)   WS 6  
01/30 Rotations in the state space. (notes) HW 5(solutions) WS 7  
02/01 Spin. Tensor products. (notes)   WS 8  
02/04 Tensor products (ctd). Rotations in the spin space.(notes)   WS 9  
02/06 Representations of the rotation operator.(notes)   WS 10  
02/08 Spherical harmonics as rotation matrices. (notes)   WS 11  
02/11 Addition of angular momenta: introduction.(notes)   WS 12
02/13 Examples of addition of angular momenta.(notes) HW 6(solutions) WS 13
02/15 Addition of angular momenta: general formalism.(notes)   WS 14  
02/18 Midterm(solutions)  
02/20 Rotation matrices for coupling two angular momenta.(notes) HW 7(solutions)
02/22 Scalar, vector and tensor operators.(notes)   WS 15
02/25 Cancelled: weather. Scalar, vector and tensor operators(ctd). Properties of spherical tensors.
02/27 Cancelled: weather. HW 8(solutions)
03/01 Properties of spherical tensors. (notes)   WS 16
03/04 Properties of spherical tensors. Wigner-Eckart theorem.(notes) WS 17
03/06 Wigner-Eckart theorem (ctd).Time-independent perturbation theory: non-degenerate case.(notes)   WS 18
03/08 Time-independent perturbation theory: non-degenerate case. HW 9(solutions) WS 19
03/11 Time-independent perturbation theory: non-degenerate vs degenerate case.(notes)   WS 20
03/13 Applications of time-independent perturbation theory: fine structure of the hydrogen atom.(notes)   WS 21
03/15 Applications of time-independent perturbation theory: hyperfine structure of the hydrogen atom.(notes)