Ph 652   Quantum Mechanics II

Physics Department, Oregon State University

Winter 2017 term

Instructor: Oksana Ostroverkhova (Wngr 413)
Lectures: MWF 9am, Weniger 304
Course Information
(pdf file) 

DateLectures AssignmentsNotes
01/09 No class: comprehensive exam.      
01/11 No class: weather.      
01/13 Motion in central potentials. (notes) Two-body problem. (notes)Orbital angular momentum. HW 1 (solutions)    
01/16 Martin Luther King   day  
01/18 Ladder operators. (notes) HW 2 (solutions) WS 1 PRL2004 for HW2
01/20 Rotation of diatomic molecules.(notes)   WS 2  
01/23 Hydrogen atom.(notes) HW 3 (solutions) WS 3  
01/25 Hydrogen-like atoms and ions.(notes) HW 4 (solutions) WS 4
01/27 Other examples of particles in spherically-symmetric potentials. (notes)   WS 5  
01/30 Angular momentum and rotations. (notes)   WS 6  
02/01 Rotations in the state space. (notes) HW 5(solutions) WS 7  
02/03 Spin. (notes)   WS 8  
02/06 Tensor products. Rotations in the spin space.(notes)   WS 9  
02/08 Representations of the rotation operator.(notes)   WS 10  
02/10 Spherical harmonics as rotation matrices. (notes) HW 6(solutions) WS 11  
02/13 Addition of angular momenta: introduction.(notes)   WS 12
02/15 Examples of addition of angular momenta.(notes) HW 7(solutions) WS 13
02/17 Midterm(solutions)  
02/20 Addition of angular momenta: general formalism.(notes)      
02/22 Rotation matrices for coupling two angular momenta.(notes) HW 8 WS 14
02/24 Scalar, vector and tensor operators.(notes)   WS 15
02/27 Properties of spherical tensors. HW 9 WS 16
03/01 Wigner-Eckart theorem. HW 10 WS 17
03/03 Time-independent perturbation theory: non-degenerate case.   WS 18
03/06 Time-independent perturbation theory: degenerate case. HW 11 WS 19
03/08 Stark effect.   WS 20
03/10 Applications of time-independent perturbation theory: fine structure of the hydrogen atom. HW 12 WS 22
03/13 Hyperfine structure of the hydrogen atom.   WS 23
03/15 Interaction of the hydrogen atom with magnetic fields.    
03/17 Van der Waals interaction.    
03/20 Final Exam   (Thursday, 03/23, 9: 30 AM)