01/09 
No class: comprehensive exam. 



01/11 
No class: weather. 



01/13 
Motion in central potentials. (notes) Twobody problem. (notes)Orbital angular momentum.  HW 1 (solutions) 


01/16 
Martin Luther King day 

01/18 
Ladder operators. (notes) 
HW 2 (solutions) 
WS 1 
PRL2004 for HW2 
01/20 
Rotation of diatomic molecules.(notes)


WS 2 

01/23 
Hydrogen atom.(notes) 
HW 3 (solutions) 
WS 3 

01/25 
Hydrogenlike atoms and ions.(notes) 
HW 4 (solutions) 
WS 4 
01/27 
Other examples of particles in sphericallysymmetric potentials. (notes) 
 WS 5  
01/30 
Angular momentum and rotations. (notes) 

WS 6 

02/01 
Rotations in the state space. (notes) 
HW 5(solutions) 
WS 7 

02/03 
Spin. (notes) 

WS 8 

02/06 
Tensor products. Rotations in the spin space.(notes) 

WS 9 

02/08 
Representations of the rotation operator.(notes) 

WS 10 

02/10 
Spherical harmonics as rotation matrices. (notes) 
HW 6(solutions) 
WS 11 

02/13 
Addition of angular momenta: introduction.(notes) 

WS 12 

02/15 
Examples of addition of angular momenta.(notes) 
HW 7(solutions) 
WS 13 

02/17 
Midterm(solutions) 

02/20 
Addition of angular momenta: general formalism.(notes) 



02/22 
Rotation matrices for coupling two angular momenta.(notes) 
HW 8 
WS 14 

02/24 
Scalar, vector and tensor operators.(notes) 

WS 15 

02/27 
Properties of spherical tensors. 
HW 9  WS 16 

03/01 
WignerEckart theorem. 
HW 10  WS 17 

03/03 
Timeindependent perturbation theory: nondegenerate case. 

WS 18 

03/06 
Timeindependent perturbation theory: degenerate case. 
HW 11 
WS 19 

03/08 
Stark effect. 

WS 20 

03/10 
Applications of timeindependent perturbation theory:
fine structure of the hydrogen atom. 
HW 12 
WS 22 

03/13 
Hyperfine structure of the hydrogen atom. 

WS 23 

03/15 
Interaction of the hydrogen atom with magnetic fields. 



03/17 
Van der Waals interaction. 



03/20 
Final Exam (Thursday, 03/23, 9: 30 AM)

