Midterm

(Wednesday, November 1, 2017)

This is an open-book exam. The total number of points is 100. You have 50 minutes to complete all three problems.

1. **(30 pts)** The Hamiltonian of a two-state system is given by
 \[H = E \left(|\varphi_1\rangle \langle \varphi_1| - |\varphi_2\rangle \langle \varphi_2| - i |\varphi_1\rangle \langle \varphi_2| + i |\varphi_2\rangle \langle \varphi_1| \right), \]
 where \(|\varphi_1\rangle, |\varphi_2\rangle \) form a complete and orthonormal basis; \(E \) is a real constant having the dimensions of energy.

 (a) Is \(H \) Hermitian?
 (b) If \(H \) is measured, what are the possible outcomes?
 (c) What are the possible (normalized) states of the system after this measurement?

2. **(40 pts)** Operators \(A \) and \(B \) are represented in some complete and orthonormal basis as follows:
 \[A = \begin{pmatrix} a & 0 & 0 \\ 0 & -a & 0 \\ 0 & 0 & -a \end{pmatrix} \quad B = \begin{pmatrix} b & 0 & 0 \\ 0 & 0 & -ib \\ 0 & ib & 0 \end{pmatrix} \]

 (a) Is \(\{A\} \) a C.S.C.O.? What about \(\{B\} \)? What about a set \(\{A,B\} \)?
 (b) Find a set of orthonormal kets that are simultaneous eigenkets of both \(A \) and \(B \).
 Specify the eigenvalues of \(A \) and \(B \) for each of the three eigenkets. Does your specification of eigenvalues completely characterize each eigenket?

3. **(30 pts)**

 (a) Are the following operators Hermitian, anti-Hermitian or neither? Show.
 i. \([X,P]\)
 ii. \([X^2,P]\)

 (b) Prove \(\text{Tr}(U^*AU) = \text{Tr}(A) \), where \(A \) is an arbitrary operator and \(U \) is a unitary operator.