Problems with classical theory and emergence of quantum mechanics

Black-body radiation

Material object that absorbs all incident radiation

Heated object radiates \Rightarrow spectral energy density $U(v, T)$

Classical description:

Consider standing waves (eigenmodes) of a cavity

Solve electromagnetic wave equation with boundary conditions

Obtain $U(v, T) = \frac{8\pi}{c^3} v^2 k_B T$ (1900)

Rayleigh-Jeans law
Problem: blows up at $v \to \infty$!

(UV catastrophe)

Eventually: derivation assumed that the energy exchange between radiation and matter is continuous, i.e. any amount of energy can be exchanged. Which is wrong.

Another approach:

Wien (1889) ⇒ use thermodynamics and experimental Stefan–Boltzmann law

$E = \sigma T^4$, $\sigma = 5.67 \times 10^{-8} \text{W/m}^2\text{K}^4$

$U(v, T) = A v^3 e^{-\nu_v / T}$, where A, ν_v are adjustable parameters

Wien's formula (1894)

Problem: fits well only high-frequency data

Rayleigh–Jeans, $\propto v^2$

Planck, $\sim e^{-\nu_v / T}$
Planck (1900):

Laws of classical physics do not apply on an atomic scale.

- Radiating body consists of an enormous number of elementary oscillators vibrating at all possible frequencies.
- These oscillators are the source of the emitted radiation.
- The energy of an oscillator is quantized

\[E = n \hbar \nu \]

\[U (\nu, T) = \frac{8\pi \nu^2}{c^3} \frac{\hbar \nu}{e^{\hbar \nu / kT} - 1} \]

\[\hbar = 6.626 \times 10^{-34} \text{ J} \cdot \text{s} \]

Exact explanation of the radiation process \(\Rightarrow\) Einstein light quanta
2. Photoelectric effect.

Experimental demonstration by Hertz (1887)

Experimental observations:

- Monochromatic light yields electrons of a definite energy.
- There is a threshold frequency ν_0 at which electron emission starts, and it's instantaneous.
- At any frequency $\nu > \nu_0$, the energy of electrons is linearly proportional to the frequency of light.
- Kinetic energy of the electrons depends on the frequency, but not on the intensity of the beam.
- Increase in light intensity leads to the emission of more electrons, but does not change their energy.

Problem: In classical physics (wave theory) \Rightarrow

- The higher light intensity, the higher electron energy is expected.

Explanation: Einstein (1905) \Rightarrow

$$\frac{1}{2} m \nu^2 = h \nu - W \Rightarrow \text{binding energy of an electron in the metal}$$
Light radiation consists of a beam of corpuscles, the photons, of energy $h\nu$ and velocity c

$$c = 3.10^8 \frac{m}{s} \text{ in vacuum}$$

3. **Compton effect**

X-ray scattering by (free) free electrons

\[\text{incident } \gamma, \beta \rightarrow E, \bar{E} \]

\[\cos \theta = \frac{E}{\gamma} \]

\[\Rightarrow \text{scattered } \gamma', \beta' \]

Classical prediction

- scattered light has the same frequency $\nu' = \nu$
- scattered $I' \sim I_{\text{inc}}$
- scattered intensity

Experiment

$\nu \neq \nu'$, $\Delta \lambda = \lambda' - \lambda = \frac{c}{\nu}\cdot \frac{\sin^2 \theta}{2}$

Compton scattering formula

$$\lambda_c = \frac{h}{m_e c} = 3.86 \times 10^{-13} \text{ m} \quad \text{Compton wavelength of the electron}$$

Photons collide with electrons like material particles
Other groundbreaking experiments

Franck-Hertz experiment (1913)

Triode filled with Hg vapor. Electrons are mostly from K to A through a grid G, to which a small countervoltage is applied.

At electron energies below 4.9 eV, the electrons don't "notice" the grid G and reach A ⇒ the current increases as the voltage increases. At 4.9 eV, Hg absorbs the electron's energy & the electron becomes slow and never reaches A (because of the grid G) ⇒ the current drops. The situation repeats at 4.9x2 = 9.8 eV, then at 4.9x3 = 14.7 eV, etc.

Demonstration of discreet energy levels in the Hg atom.
Stern-Gerlach experiment (1921)

Randomly oriented Ag atoms (neutral) in the ground state

Magnetic moment
\[\vec{\mu} = \frac{e}{m_e c} \vec{S} \]
\(\vec{S} \) = spin

\[\Rightarrow \text{interacts with } \vec{B} \Rightarrow W = -\vec{\mu} \cdot \vec{B} \]

\(W = -\vec{\mu} \cdot \vec{B} \)

\(\text{Force along } z \Rightarrow F_z = -\frac{\partial W}{\partial z} \approx \mu_z \frac{\partial B_z}{\partial z} \)

\(= \frac{e}{m_e c} s_z \frac{\partial B_z}{\partial z} \)

Why two components?

Only two possible values of \(S_z \)

\[S_z = \pm \frac{\hbar}{2} \]
Question: Can this experiment be done with hydrogen atoms? If yes, in what state?

Answer: Yes, and it was done with \(\text{H} \)-atoms later. One needs to use \(\text{H} \)-atoms in their ground state (1S), so that the angular momentum \(l = 0 \), otherwise \(j = \sqrt{l^2 + \frac{1}{4}} \) would lead to a mess!

Question: Why not do this experiment with electrons?

Answer: Electrons are charged particles, so in a magnetic field the force would not be just \(\frac{\partial}{\partial t} (\mathbf{p} \cdot \mathbf{B}) \), but would also include the Lorentz force \(\mathbf{F} = e \mathbf{v} \times \mathbf{B} \) leading to a mess.

Young experiment

| Incident wave | \(\frac{1}{2} \) \(\frac{1}{2} \) |

\[I(x) \neq I_1(x) + I_2(x) \]

CCD sensor

Intensity distribution from a single slit
Recall classical physics:

Treat light as a conventional plain wave, with electric fields

\[E_1(\vec{r}) = E_1^0 e^{i(\vec{k}_1 \cdot \vec{r} - \omega t)} \]
\[E_2(\vec{r}) = E_2^0 e^{i(\vec{k}_2 \cdot \vec{r} - \omega t)} \]

for the beams 1 and 2.

Then, total \(\vec{E} = \vec{E}_1 + \vec{E}_2 \Rightarrow \)

intensity \(I = |\vec{E}(\vec{r})|^2 = |E_1^0|^2 + |E_2^0|^2 + 2E_1^0 E_2^0 \cos (\vec{k}_1 - \vec{k}_2) \cdot \vec{r} \)

interference term

What if we reduce the amount of light, so that only one photon at a time passes through a double-slit apparatus? \(\Rightarrow \) after a very long time see the same interference pattern (although we know that the photons could not have interacted with each other, since we let them through one at a time!)

\[\text{CCD sensor} \]

\[\text{Very long time} \quad \Rightarrow \quad \text{Wave-like behavior} \]

\[\text{Very short time (random mess)} \quad \text{Particle-like} \]
Conclusion: light behaves simultaneously as a wave and as a flux of particles.

How do we interpret the interference pattern produced by a single photon source? It is a probability amplitude that the photon arrives at a given spot at a given time. So, in QM there are no definite trajectories (in contrast to classical mechanics) only probability to find a system in a certain state.

Consider another example.

\[\vec{E}(r,t) = E_0 \vec{e}_p e^{i(kz - \omega t)} \]

(Propagates along z-axis)

It's linearly polarized along \(\vec{e}_p \), which is under an angle \(\Theta \) with respect to x-axis's.

After the polarizer \(\vec{E}'(r,t) = E'_0 \vec{e}_x e^{i(kz - \omega t)} \)
Light intensity $I' = |\vec{E}'|^2 = E_1^2 = \frac{E_0^2 \cos^2 \theta}{I_{\text{before polarizer}}}$

$= I_{\text{before polarizer}} \cos^2 \theta$ \[\text{Malus's law}\]

What if $I_{\text{before polarizer}}$ is weak enough, so that the photons reach the detector one by one? \Rightarrow The detector can't register "a fraction of a photon". The photon either passes through the polarizer or does not pass! We do not know what photon will pass and which one won't \Rightarrow We only know the corresponding probabilities. Our detector can give only certain privileged results \Rightarrow eigen results. Each of these eigen results corresponds to an eigenstate. \Rightarrow In this case we have two eigenstates:

- one is characterized by $\vec{\mathbf{p}} = \hat{\mathbf{x}}$ (pass) and another one - by $\vec{\mathbf{p}} = \hat{\mathbf{y}}$ (does not pass). If before the measurement the particle is in one of the eigenstates, the result of the measurement is certain: the detector will produce the corresponding eigenresult.
If the state before measurement is arbitrary only probabilities of obtaining different eigenvalues can be predicted:
\[\hat{\varepsilon}_p = \hat{\varepsilon}_x \cos \Theta + \hat{\varepsilon}_y \sin \Theta \]
(present initial state in terms of the eigenstates)
Probability of "passing": \(\cos^2 \Theta \), "not passing": \(\sin^2 \Theta \)
Total probability: \(\cos^2 \Theta + \sin^2 \Theta = 1 \)

Such decomposition in QM is called "principle of spectral decomposition"

Note: our detector distinguishes only between the states \(\hat{\varepsilon}_x \) and \(\hat{\varepsilon}_y \) (photon detected or undetected, respectively), and info about our initial state \(\hat{\varepsilon}_p \) is contained only in probabilities to get an outcome \(\hat{\varepsilon}_x \) or outcome \(\hat{\varepsilon}_y \) \(\Rightarrow \) so, the measurement event distorts the system, "forcing" it to show only its eigenresults.

This is most bizarre and beautiful property of QM systems!!