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Chapter 3. Boundary-Value Problems in Electrostatics: 

Spherical and Cylindrical Geometries 

3.1 Laplace Equation in Spherical Coordinates 

The spherical coordinate system is probably the most useful of all coordinate systems in study 

of electrostatics, particularly at the microscopic level. In spherical coordinates        , the 

Laplace equation reads: 
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Try separation of variables                    . Then Eq. 3.1 becomes 
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Since each side must be equal to a constant,         , we get two equations. 

Radial equation 
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Introducing           , we obtain 

   

   
 

      

  
    

The general solution of this equation is 

                             
 

    
 

Angular equation 
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We solve Eq. 3.6 using the separation of variable method again:                . Then we 

obtain two ordinary differential equations for   and    : 
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Equation 3.8 has solutions 

            

If the full azimuthal range           is allowed,              so that   must be an 

integer. The functions    form a complete set of orthogonal functions on the interval 

      , which is nothing but a basis for Fourier series. The orthogonality relation is 
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Simultaneously, the completeness relation is 
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Associated Legendre Polynomials 

Equation 3.7 can be written in terms of         : 
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This is the differential equation for the associated Legendre polynomials. Physically acceptable 

solution (i.e.,       ) is obtained only if   is a positive integer or 0. The solution is then 

associated Legendre polynomial   
     where           and       .  

  
     has the form,       

| |

  times a polynomial of order   | |, which can be obtained by 

Rodrigues formula, 
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and the parity relation 
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The orthogonal relation of the functions   
  is expressed as 
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The functions       for     are called Legendre polynomials which are the solutions when 

the problem has azimuthal symmetry so that   is independent of  . The first few    are 

       ,         ,        
 

 
       ,  … 

The Legendre polynomials form a complete orthogonal set of functions on the interval 

      . The orthogonality condition can be written as 
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and the completeness relation is expressed as 
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Spherical Harmonics 

The angular function can be written as                
           , where     is 

normalization constant. The normalized angular functions, 
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are called spherical harmonics.  

    is either even or odd, depending on  , i.e.,                    : 

In the spherical coordinate,      corresponds to                , therefore 
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The first few spherical harmonics are 
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Spherical harmonics form an orthonormal basis for   and  : 

∫   
                             

The corresponding completeness relation is written as 

∑ ∑    
                 

 

    

 

   

                       

General Solution 

The general solution for a boundary-value problem in spherical coordinates can be written as 

         ∑ ∑ [                ]         

 

    

 

   

 

3.2 Boundary-Value Problems with Azimuthal Symmetry 

We consider physical situations with complete rotational symmetry about the z-axis (azimuthal 

symmetry or axial symmetry). This means that the general solution is independent of  , i.e., 

    in Eq. 3.25: 
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The coefficients    and    can be determined by the boundary conditions. 

Spherical Shell 

Suppose that the potential      is specified on the surface of a spherical shell of radius  . 

Inside the shell,      for all   because the potential at origin must be finite. The boundary 

condition at     leads to 

     ∑   
          

 

   

 

Using the orthogonality relation Eq. 3.17, we can evaluate the coefficients   , 
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(3.23) 
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On the other hand, outside the shell,      for all   because the potential for     must be 

finite and the boundary condition gives rise to 
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Two hemispheres at equal and opposite potentials 

 

Consider a conducting sphere composed of two hemispheres at equal and opposite potentials 

as shown in Fig. 3.1. Then, inside the sphere, the coefficients    are 
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Thus, for even  ,      , and for odd  ,  using Rodrigues formula, we obtain 
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Similarly, outside the sphere, for even  ,      , and for odd   

            

Using Eq. 3.30 and 3.31, we obtain the potential in entire space: 
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Fig  3.1. Conducting sphere of radius a 

made up of two hemispherical shells 

separated by a thin insulating ring. They 

are kept at different potentials, +V and –V. 

(3.29) 

(3.30) 

(3.31) 

(3.32) 
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Metal sphere in a uniform electric field 

An uncharged metal sphere of radius   is placed in an 

otherwise uniform electric field        as shown in Fig. 3.2. 

The potential is given by 

                     

at large distances from the ball, where     in the 

equatorial plane at    . Accordingly, the boundary 

condition at the surface is         .  Referring to the 

general solution Eq. 3.26, we can immediately set all    

except for          equal to zero.  At    , we have 
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We can determine    from this equation:       
  and       for    . We finally have 

          (  
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The (normal) electric field at the surface is 

    (
  

  
)
   

         

The surface charge density is 

                    

Point charge on the z-axis 

The potential at x due to a unit point charge at x’ can be expressed as an important expansion: 
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Where    and    are the smaller and larger of   and   , respectively, and   is the angle between 

x and x’. We can prove this equation by aligning x’ along the z-axis as shown in Fig. 3.3. This 

system has azimuthal symmetry, thus we can expand the potential as 
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(3.33) 

Fig  3.2. 
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Fig. 3.3 

 

If the point x is on the z-axis,  
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Therefore, we can write 
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In fact, this equation is independent of coordinate system because   is the angle between x and 

x’, i.e.,     . This proves the general result of Eq. 3.38. 

Charged circular ring 

  

The potential on the z-axis due to a charged ring shown in Fig. 3.4 is 
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Fig  3.4. Charged ring of radius   

and total charge of   located on 

the z-axis with center at    . 
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(3.42) 

where          and      
 

 
. We can expand Eq. 3.42 using Eq. 3.38. 
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Thus the potential at any point in space is 
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3.3 Electric Fields Near a Sharp Point of Conductor 

We discuss how electric fields behave near a sharp point of conductor. We consider a conical 

conducting tip which possesses azimuthal symmetry as shown in Fig. 3.5. 

             
The basic solution to the Laplace boundary-value problem of Fig. 3.5 is            , where the 

order parameter   is determined by the opening angle  . Since the potential must vanish at 
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The general solution for the potential is expressed as 
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Fig  3.5. Conical conducting tip of 

opening angle   located at the 

origin 

(3.45) 

(3.46) 
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The potential near the tip is approximately 

          
     

       

where    is the smallest root of Eq. 3.45. The components of electric field and the surface-

charge density near the tip are 
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The field and charge density all vary as        as     , therefore they are singular at     for 

    . When the tip is sharp, i.e.,    , an approximate expression for    as a function   is 
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Figure 3.6 show   as a function of   for            . This indicates that the fields near a 

sharp point of conductor vary as         where    . 

        

 

3.4 Laplace Equation in Cylindrical Coordinates 

In cylindrical coordinates        , the Laplace equation takes the form: 
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Separating the variables by making the substitution 
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Fig  3.6. The order parameter     

as a function of the opening 

angle   for     
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Then we obtain the three ordinary differential equations: 
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The solutions of the first two equations are easily obtained: 

                                                   and            

When the full azimuthal angle is allowed, i.e.,       ,   must be an integer. We rewrite 

the radial equation (Eq. 3.54)  by chaning the variable     . 
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The solutioins to this equation are best rexpressed as a power series in  . There are two 

independet solutions,       and      , called Bessel functions of the first kind and Neumann 

functions, respectively. The Bessel function is defined as 
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The limiting forms of       and       for small and large   are usuful to analyze the physical 

properties of the given bounary-value problem. 
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Fig. 3.7. First few Bessel functiosn and Neumann functions 

The roots of Bessel functions are important for many boundary-value problems: 

                       

    is the  th root of      : 
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The normalization integral is 
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Cylindrical Cavity 

We consider a cylinder of radius   and height   as shown 

in Fig. 3.8. The potential on the side and the bottom is 

zero, while the top has a potential         . We want 

to find the potential at any point inside the cylinder. 

Boundary conditions 

     at     leads to            .  

     at    , i.e.,              

             therefore,     
   

 
   (see, Eq. 3.62) 
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Then, the general solution can be expressed as 

         ∑ ∑                                      
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At    , we have         , thus 

       ∑ ∑                                      
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We can determine the coefficients     and     using the orthogol relations of the sinusoidal 

and Bessel functions (see Eq. 3.63). 
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3.5 Poisson Equation and Green Functions in Spherical Coordinates 

Addition thorem for spherical harmonics 

    Fig  3.9. 

The potential at x (x’) due to a unit point charge at x’ (x) is an exceedingly important physical 

quantity in electrostatics.  When the two coordinate vectors x and x’ have an angle   between 

them, it can be expressed as an important expansion (see Eq. 3.38. We proved this equation in 

Section 3.2.): 
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where    and    are the smaller and larger of   and   , respectively. It is of great interest and 

use to express this equation in spherical coordiantes. The addition theorem of spherical 

harmonics is an useful mathematical result for this purpose. 

The addition theorem expresses a Legendre polynomial of order   in the angle   In spherical 

coordiates as shown in Fig. 3.9:  
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Combining Eq. 3.32 and 3.67, we obtain a completely factorized form in the coordinates x and 

x’. 
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We immediately see that Eq. 3.68 is the expansion of the Green function in spherical 

coordinates for the case of no boundary surfaces, except at infinity. 

Green function with a spherical boundary 

The Green function appropriate for Dirichlet boundary conditions on the sphere of radius a  

satisfies the equation (see Eq. 1.27) 

                     
and is expressed  as (see Eq. 2.13 and 2.14)   
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where              for      and            for       . The discussion of the 

conducting sphere with the method of images indicates that the Green function can take the 

form 
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Using Eq. 3.68 we rewrite Eq. 2.14 as  
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The radial factors inside and outside the sphere can be separately expressed as 
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General structure of Green function in spherical coordinates 

The Green function appropriate for Dirichlet boundary conditions satisfies the equation (see Eq. 

1.27) 

                     

In spherical coordinates the delta function can be written 

        
 

  
                            

Using the completeness relation for spherical harmonics (Eq. 3.24), we obtain 
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Equation 1.27 and 3.72 leads to the expansion of the Green function 
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and the equation for the radial Green function 
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The general solution of this equation for      (see Eq. 3.5) can be written as 
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The coefficients A, B, A’, B’ are functions of r’ to be determined by the boundary conditions, the 

discontinuity at     , and the symmetry of       
       

    .  

 

(3.70) 
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Green function with noboundary 

For the case of no boundary,    must be finite for     and  , therefore   and    are zero. 
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Then, the symmetry of of       
       

     leads to 

      
       

      
  
 

  
    

where    and    are the smaller and larger of   and   , respectively. We determine the constant 

  using the discontinuity at     . Integrating the radial equation 3.74 over the infinitesimally 

narrow interval from        to        with very small  , we obtain 
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Substituning Eq. 3.77 into Eq. 3.78, we find 
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This reduces to Eq. 3.68 
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Green function with two concentric spheres 

Suppose that the boundary surfaces are concentric spheres at     and    .           on 

the surfaces gives rise to 
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Using the discontinuity at      (Eq. 3.78), we obtain the constant  : 
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Combining Eq. 3.73, 3.81, and 3.82, we find the expansion of the Green function 
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Charged ring inside a grounded sphere 

       

We consider a spherical cavity of radius   with  a concnetric righ of charge of radius   and total 

charge   as shown in Fig. 3.10. The charge density can be written as 

      
 

    
                

The general solution of the Poisson equation (Eq. 1.31) is given as 
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Since     on the sphere 
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Using Eq. 3.83 with    , 
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Fig  3.10. Charged ring of radius   and 

total charge Q inside a grounded, 

conducting sphere of radius b. 
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where    and    are the smaller and larger of   and  , respectively. 

Uniform line charge inside a grounded sphere 

      

We consider a spherical cavity of radius   with  a uniform line charge of length    and total 

charge   as shown in Fig. 3.11. The charge density can be written as 
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Using Eq. 3.84 and             , we obtain the solution 
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The integral must be broken up into two intervals 
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For    , this result is indeterminate, and hence we use its limiting behavior 
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Fig  3.11. Uniform line charge of 

length    total charge Q inside a 

grounded, conducting sphere of 

radius b. 
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Substituting Eq. 3.88 and 3.98 into Eq. 3.87, we find  
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The surface charge density on the grounded sphere is 
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3.6 Conducting Plane with a Circular Hole 

 

We consider a grounded conducting plane in which a circular hole is punctured. Figure 3.12 

illustrates the geometry. The electric field far from hole has only a z component:        for 

    and      for    . From the limiting behavior of the field, we can deduce that the 

potential takes the form 

  {
            

        
 

where      is the potential due to a rearrangement of surface charge near the hole,     . 

Because of the azimuthal symmetry,      is independent of  , and it can be expressed as 
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Fig 3.12. A circular hole of radius   is 

punctured in a grounded conducting 

plane. The limiting behavior of the 

electric field far from the hole is 
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Mixed boundary conditions 

     is even in z, and hence   
   

 is odd. Since the total z component of electric field must be 

continuous across     in the hole, we must have (for    ) 
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Since   
   

 is odd,   
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This relation and the ground potential of the conducting surface complete the boundary 

conditions for the entire xy plane. We therefore have mixed boundary conditions 
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Solution of Laplace equation in cylindrical coordinates 

The general solution of the Laplace equation in cylindrical coordiates (see Eq. 3.51, 3.55 and 

3.57) is 

                               

Because of the azimuthal symmetry,      is independent of  , and hence    . Therefore, 

     can be written in terms of cylindrical coordinates 

          ∫        | |      
 

 

   

Boundary conditions and integral equatoins 

 The boundary conditions (Eq. 3.96) for the general solution (Eq. 3.98) give rise to the integral 

equatoins of the coefficient     : 
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There exists an analytic solution of these interal equations. 
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where        is the spherical Bessel function of order 1. 

(3.94) 
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Multipole expansion in the far-field region 

In the far-feld region, i.e., in the region for | | and/or    , the integral in Eq. 3.98 is mainly 

determined by the contributions around    , more precisely, for   
 

 
. The expansion of 

     for small    takes the form 
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The leading term gives rise to the asymptotic potential 
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Here we have the asymptotic potential 
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falling off with distance as     and having an effective electric dipole moment, 

   
 

 
     

  

where – for     and   for    . 

Potential in the near-field region 

The potential in the neighborhood of the hole must be calculated from the exact expression 
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An integration by parts and Laplace transforms results in 
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 For    ,  
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This is consistent with the dipole approximation in Eq. 3.102. 

 In the plane of the opening (    , 
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The tangential electric field in the opening is a radial field, 
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The boundary condition in Eq. 3.96 indicates the normal component of electric field in 

the opening, 
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Fig 3.13. Equipotential 

contours of the additional 

potential      and the total 

potential   in the vicinity of 

the hole.           as a 

function of z is also shown. 


