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SPINS Lab 1

1. Measure the spin projection Sz along the z-axis.  This is the experiment that is ready to go

when you start the program, as shown below.  Each atom is measured to have spin up or spin

down, denoted by the arrows and by the +  and −  symbols (we will explain the symbols in

more detail later) in the figure below.  The measured spin projections for these cases are

  Sz = ±h 2 .  Run the experiment by selecting Do 1  (ctrl -1) under the Control  menu, which

sends one atom through the apparatus.  Do this repeatedly so you can see the inherent randomness

in the measurement process.  Try running the experiment continuously (Go) and using the other

fixed numbers (10, 100, 1000, 10000).

2. From the above experiments, and from what we have said in class, you will have surmised

that the probability for a spin-up measurement is   P = 1 2 , with the probability for spin down being

  ( )1 1 2− =P .  How can we be certain of this?  Let’s do a series of experiments and examine the

statistics of the data (see appendix for information about statistics).  Reset the counters and run the

experiment 100 times (ctrl -3).  Record the number of counts in the spin-up detector in the table

below.  Repeat this 10 times to fill up the table (I have already done the 10 atom case).  Now put

the numbers into your calculator and find the mean x  and standard deviation s of your data, and

the standard deviation of the mean σm .  Then calculate the experimental estimate of the probability

  P , its uncertainty   σP , and the relative uncertainty   σP P .  Do again for 1000 and 10000 atom

cases.  Are you convinced that   P = 1 2?  How confident are you?
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No. of Atoms (M) 10 100 1000 10000

7

5

5

8

Data 5

(N = 10) 4

8

2

7

8

x 5.90

s 2.02

σm 0.64

  P 0.590

  σP 0.064

  σP P 0.11

3. Now set up an experiment to measure the spin projection Sz along the z-axis twice in

succession as shown below.  You need an extra analyzer and another counter (see the SPINS notes

for help).  Run the experiment and note the results.  Focus your attention on the second analyzer.

The input state is denoted +  and there are two possible output states +  and − .  What is the

probability that an atom entering the second analyzer (state in = + ) exits the spin up port (state

out = + ) of the second analyzer?  This probability is denoted in general as   P out out in( ) = 2 ,

and in this case specific case as   P +( ) = = + +out in 2 2.  What is the probability of exiting the

spin down port (state − )?  What conclusions can you draw from the measurements performed in

this experiment?
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4. Using the same apparatus as above (#3), change the orientation directions of the analyzers.

You can choose directions X, Y, or Z, which are oriented along the usual xyz-axes of a Cartesian

coordinate system (ignore the fourth direction n̂ for now).  When a direction other than Z is

chosen, we use a subscript to distinguish the output states (e.g., − y).  If we allow ourselves to

also use the spin down port of the first analyzer as input to the second analyzer (not both up and

down at the same time), then there are six possible input states and six possible output states for

the second analyzer, which are listed in the table below.  Your task is to measure the probabilities

  P out out in( ) = 2  corresponding to these input and output states.  Remember that this is the

probability that an atom leaving the first analyzer also makes it through the second analyzer to the

appropriate detector, and not the total probability for getting from the oven to the detector.  The

experiment performed in #3 above (with both analyzers along the z-axis) gave the result

+ + =2 1, which is already entered in the table.  Now do all other possible combinations and fill

in the rest of the table.

out in 2 + − + x − x + y − y

+ 1

−

x +

x −

y +

y −
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Appendix A: Statistics information

As you see in the experiments, the arrival of an atom at a measurement counter is a random

process.  We would like to use the results of the experiments to determine the probability   P  that

governs that random process.  In the cases where all the atoms exit one port, then it is clear that the

probability is 1 for that output state and zero for the other.  However, if we measure 3 spin up

atoms and 7 spin down atoms, then we must apply statistical analysis to help us solve the problem.

Of course, those results would lead you to conclude that the probability of spin up is   P +( ) = 0 3.

and the probability of spin down is   P −( ) = 0 7. .  However, if you performed the experiment a

second time and counted 4 spin-up atoms and 6 spin-down atoms, then you would want to revise

your estimates.

The questions we thus wish to address are:      What is the best estimate of the probability,

given the experimental data, and how confident are we of that estimate?   

To answer these questions, let's first discuss what results we expect to obtain if we know

the probability.  Assume that a random process is governed by a probability   P , and that each event

is independent of all other events.  Now assume that we have M of these events and we count the

number of successes (e.g., spin-up atoms), which we call n.  The probability that we count n

spin–up atoms out of M total atoms is determined by the binomial probability distribution, and is

given by

  
f n

M

M n nM
n M n( ) =

−( )
−( ) −!

! !
P P1 .

This probability distribution is shown in Fig. A1 for the case M = 10 and   P = 0 5. .  Thus, for
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Figure A1.  Binomial distribution for 10 events.
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example, you expect to count 3 spin-up atoms about 12% of the time (f10 3 0 12( ) = . ) and 5

spin–up atoms 25% of the time (f10 5 0 25( ) = . ) in this case.  The most obvious conclusion is that

one single measurement of 10 atoms is not too reliable a predictor of the probability   P  that an atom

is measured to have spin up.

To reliably predict the probability we must perform repeated experiments and produce an

experimental histogram of the data akin to the plot in Fig. A1.  From the statistical properties of the

histogram we can then estimate the probability and determine an error or uncertainty in that

probability.

We generally characterize a probability distribution by 2 quantities: (1) the average or mean

or expectation value, which is denoted by n  or n , and (2) the standard deviation σ, which is the

square root of the variance σ2.  The mean tells you where the distribution is centered and the

standard deviation tells you about the width of the distribution.  The mean is obtained as a

weighted average of the possible results:

n nf n
n

= ( )∑ ,

where f(n) is the probability of recording n counts.  The variance is defined as

σ2 2= −( ) ( )∑ n n f n
n

.

For the binomial distribution, the mean is

  n M= P ,

and the standard deviation is

  σ = −( )MP P1 .

Experimental data is also commonly characterized by these two quantities.  Consider an

experiment where a variable x is measured N times to yield a data set xi.  The mean x  (or average

value) of this data is

x
N

xi
i

N

=
=
∑1

1

.

The standard deviation s of the data is
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To connect this firmly to our experiments, assume that the variable x represents the number of

times a certain result was obtained in M tries (e.g., M atoms leave the oven and we measure how

many end up as spin up).  You would thus expect (and it is true) that the best experimental

estimates of the parameters n and σ of the theoretical distribution are the experimental parameters

x sand .  Thus the experimental estimate of the probability of obtaining the desired result (e.g., the

spin-up result) is

  
P = x

M
.

What then is our uncertainty in this estimate?  The first guess is to use the standard deviation of the

data (divided by M to get a probability) since it is an estimate of the standard deviation of the

theoretical probability distribution.  However, this is not correct.  The standard deviation of the

data (and the theoretical probability distribution) tells us how the data are distributed about the

mean.  The best estimate of the uncertainty of the mean, often called the standard deviation of the

mean, is

σm
s

N
= ,

which, as you might expect, tells us that we get a better estimate of the mean if we repeat the

experiment more times.

A simple example may help to make this all more concrete.  Consider an experiment where

10 (M) coins are flipped and the number of heads (x) are counted, and the experiment is repeated

100 times (N).  Figure A2 represents data from the experiment.  The bars of the histogram tell us

how many times a given number of heads occurred.  The solid circles (connected by a solid line

only as a guide to the eye) are the expected values given that the probability of a head is 1/2; this is

just the binomial distribution shown in Fig. A1.  The data have a mean of 5.42, with a standard

deviation of 1.70, which you can see gives a measure of the width of the distribution of

measurements but is much larger than what you might guess is the uncertainty of the mean value.

(Note that if we do more experiments (increase N), the standard deviation s will not decrease, but

we expect our uncertainty in the mean (i.e., the standard deviation of the mean) to decrease.)  From

this data we would estimate the probability   P  of a head and its uncertainty   σP  to be
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Note that the uncertainty is about 3% of the value of the probability.  This is a common result in

statistics:  if you measure something N times, you can generally determine it with a precision of

1 / N .  We already saw this in the standard deviation of the mean.  In our counting experiments

here, we are actually counting NM atoms and it shouldn’t matter whether we measure them as N

groups of M or M groups of N, or any other combination; it's all the same data.  This is evident if

we recall that the standard deviation of the probability distribution scales as M .  Thus we expect

the uncertainty in the probability to scale like:

  
σ σ

P = = ∝ =m

M

s

M N

M

M N MN

1
.
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Figure A2: Experimental histogram of coin flipping.
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In the coin tossing example above NM = 1000 flips, so 1 1000 3/ %≈ .  In the 10 atoms case

shown in #2 of the lab above, NM = 100 atoms, so 1 100 10/ %= .

Note that the experimental estimate of the probability in the coin tossing example above

differs from what we know the real value to be by about 2.5 times the standard deviation.  This is

only expected to happen 1.5% of the time, but it can happen.  We expect our results to be within

one standard deviation 68% of the time and within 2 standard deviations 95% of the time.


