
1.  The bound states in the WKB approximation are found by integrating the momentum between 
the classical turning points: 

 
 

p x( )dx
x1

x2∫ = n + 1
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However, the factor of ½ comes from assuming that the potential well is linear near the turning 
point.  For the square well, that assumption is not valid, and the analysis says to not use the ½ 
factor.   For this well, the turning points are ± L 2  and the momentum is 
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Applying the modified WKB condition gives 
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Rearrange and square 
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Note that  
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Now rearrange and square again 
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The first-order energy correction in perturbation theory is 

 En
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The perturbation is different in the two halves of the well, so we break the integral into two 
pieces, with the perturbation Hamiltonian equal to zero in the left half and V0  in the right half: 
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The remaining spatial integral is the integral of the probability density over the right half of the 
well.  All the energy eigenstate probability densities are symmetric about the middle of well, so 
the integral is 1/2, yielding 

 En
1( ) = V0

2
 

for all states.  So, the two methods agree to this order. 
 
 
 
 
 
 
 
 
2.  a)  For the unperturbed case (ε = 0) we have 
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with eigenvalues E1 = V0, E2 = V0, E3 = 4V0 and eigenvectors 
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Note that 1  and 2  are degenerate and 3  is nondegenerate. 
b)  Now look at the perturbation of the nondegenerate 3  state.  First we need to write the 
perturbation Hamiltonian H' = H – H0 
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The first-order energy correction is 

 
En
(1) = n 0( ) ′H n 0( )

E3
(1) = 3 0( ) ′H 3 0( ) = 0

 

 E3
(1) = 0  



The second-order energy correction is 
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Hence the corrected energy is 
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c)  Now look at the perturbation of the degenerate 1  and 2  states.  Here we need to 
diagonalize the perturbation Hamiltonian within that 2x2 space: 
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Diagonalizing gives 

 

−λ 2εV0
2εV0 −λ
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−λ( ) −λ( ) − 2εV0( )2 = 0
λ2 − 4ε 2V0

2( ) = 0
λ = ± 2εV0

 

 
E1 = E1

(0) + E1
(1) = V0 + 2εV0 = V0 1+ 2ε( )

E2 = E2
(0) + E2

(1) = V0 − 2εV0 = V0 1− 2ε( )
 

d)  The degenerate levels split linearly, while the nondegenerate level has a quadratic 
dependence and is repelled by the one lower level it is coupled to, as expected. 
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3.  Particle #1 has spin 1 (s1 = 1) and particle #2 has spin 1/2 (s2 = 1/2).  Use the Clebsch-Gordan 
coefficients to find the coupled states in terms of the uncoupled states.  The state with total spin 
3/2 and z-component  − 2  is in the third column in the table: 

 ψ = 3
2

−1
2 = 2

3 1 12 ,0 −1
2 + 1

3 1 12 ,−1 12  

The possible measurements of the z-component of the spin of particle 1 are  1, 0, −1 , which 
correspond to m1 = +1, 0, −1 .  To find the probability of any one result we must sum over all the 
possible results of the spin component of particle 2, which are   2,  − 2  (corresponding to 
m2 = +1 2, −1 2 ).  Thus we get 
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The three probabilities add to unity, as they must.  The probabilities of the measurement of the 
spin component of particle 2 are 
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Again, the two probabilities add to unity, as they must. 
 


