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17.2.1 The first-order energy correction is: 

 En
1 = n0 H 1 n0 = n0 λx4 n0  

Use the ladder operators to make our life easy: 

 

x = 
2mω

a† + a( )

x4 = 
2mω

⎛
⎝⎜

⎞
⎠⎟
2

a† + a( )4

x4 = 
2mω

⎛
⎝⎜

⎞
⎠⎟
2

a†a†a†a† + a†a†aa† + a†aa†a† + a†aaa† + aa†a†a† + aa†aa† + aaa†a† + aaaa†{ +

                       +a†a†a†a + a†a†aa + a†aa†a + a†aaa + aa†a†a + aa†aa + aaa†a + aaaa}

 

When we take diagonal matrix elements, the only terms that survive are those that have two 
raising and two lowering operators. Thus we are left with 

 

n0 λx4 n0 = λ 
2mω

⎛
⎝⎜

⎞
⎠⎟
2

n0 a†aaa† + aa†aa† + aaa†a† + a†a†aa + a†aa†a + aa†a†a( ) n0

= λ 
2mω

⎛
⎝⎜

⎞
⎠⎟
2

n n +1( ) + n +1( )2 + n +1( ) n + 2( ) + n n −1( ) + n2 + n n +1( )⎡⎣ ⎤⎦

= λ 
2mω

⎛
⎝⎜

⎞
⎠⎟
2

6n2 + 6n + 3( ) = 3λ 
2mω

⎛
⎝⎜

⎞
⎠⎟
2

2n2 + 2n +1( )

 

Hence 

 
 
En
1 = 3λ2

4m2ω 2 2n
2 + 2n +1( )  

Dimensionally, the parameter λ  must scale like  m
2ω 2 2 × ω , so that the perturbation λx4  

has units of energy.  If we let ε  be a dimensionless scale for the perturbation 

 
 
λ = εω m2ω 2

2
= ε m

2ω 3


 

then the energy shift is 

 
 
En
1 = ε m

2ω 3


32

4m2ω 2 2n
2 + 2n +1( ) = ε 3

4
ω 2n2 + 2n +1( )  

A small perturbation has the shift much less than the energy level separation 

 

 

En
1 ω ⇒ ε 3

4
ω 2n2 + 2n +1( )ω

⇒ε 2n2 + 2n +1( )1
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No matter how small ε  is, we can always find a large enough n that violates this inequality.  
You can see this effect also by looking at the potential energies of the perturbed and unperturbed 
cases.  For small ε , the two look very similar near the origin, but as you look farther from the 
origin, the differences grow quickly.  The harmonic oscillator well goes to infinity, so we can 
always find a region where the perturbation is dominant. 
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17.2.2 For a spin-1/2 system, the Hamiltonian of the unperturbed spin in a magnetic field 
B = B0ẑ  is 

 
 

H 0 = −µ iB = −γ S iB = −γ B0Sz = −ω 0Sz 
−ω 0 2 0
0 ω 0 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 

where the Larmor freuqency ω 0 = γ B0 = −geB0 2mc .  The zeroth-order energies are 

 E1
0 = −ω 0 2  and  E2

0 = ω 0 2 .  The perturbation Hamiltonian H 1  is determined by the 
additional field B1 = Bx̂  and is characterized by a different Larmor frequency 
ω1 = γ B = −geB 2mc : 

 
 

H 1 = −µ iB1 = −γ S iB1 = −γ BSx = −ω1Sx 
0 −ω1 2

−ω1 2 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 

Perturbation theory tells us that the first-order correction to the energy is the expectation value of 
the perturbation in the unperturbed state: 

 En
1 = n0 H 1 n0   

These are the diagonal elements of the matrix representing H 1  in the basis of zeroth-order 
energy eigenstates.  The matrix above has zeroes on the diagonal, and thus yields the first-order 
energy shifts due to the perturbation: 

 
E1
1 = 0

E2
1 = 0
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The second-order correction to the energy is  

 En
2 =

n0 H 1 m0 2

En
0 − Em

0( )m≠n
∑  

For this simple two-state system, the sum reduces to just one term.  For the 10  state, the energy 
shift is  

 
 
E1
0 =

10 ′H 20
2

E1
0 − E2

0( ) =
−ω1 2

2

−ω 0 2 − ω 0 2( ) = − ω1
2

4ω 0

 

For the 20  state, the energy shift is 

 
 
E2
0 =

20 ′H 10
2

E2
0 − E1

0( ) =
−ω1 2

2

ω 0 2 − −ω 0 2( )( ) =
ω1

2

4ω 0

 

We can solve the problem exactly by diagonalizing the full Hamiltonian 

 
 

H = H 0 + H 1 

2

−ω 0 −ω1

−ω1 ω 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 

Find the eigenvalues λ using the secular equation 

 det H − λI = 0  

The secular equation for this Hamiltonian is 

 

 

− ω 0

2
− λ 

2
ω1


2
ω1

ω 0

2
− λ

= 0  

and solving yields the eigenvalues 

 

 

λ 2 − 
2
ω 0

⎛
⎝⎜

⎞
⎠⎟
2

− − 
2
ω1

⎛
⎝⎜

⎞
⎠⎟
2

= 0

λ 2 = ω 0

2
⎛
⎝⎜

⎞
⎠⎟
2

+ ω1

2
⎛
⎝⎜

⎞
⎠⎟
2

λ = ± 
2

ω 0
2 +ω1

2

 

This is the exact solution, which we now expand in a power series to second order in the small 
parameter ω1 ω0  to compare with the perturbation calculation: 
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E = ± ω 0

2
1+ ω1

2

ω 0
2 = ± ω 0

2
1+ ω1

2

ω 0
2

⎡

⎣
⎢

⎤

⎦
⎥

1 2

= ± ω 0

2
1+ ω1

2

2ω 0
2 +

⎡

⎣
⎢

⎤

⎦
⎥

≅

ω 0

2
+ ω1

2

4ω 0

− ω 0

2
− ω1

2

4ω 0

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 

Compared to the previous results 

 

 

E1 ≅ E1
0 + E1

1 + E1
2 = − ω 0

2
+ 0 − ω1

2

4ω 0

E2 ≅ E2
0 + E2

1 + E2
2 = ω 0

2
+ 0 + ω1

2

4ω 0

 

So the exact answer, to second order, agrees with the perturbation calculation to the same order. 
 
17.2.5 The helium ground state has a zeroth-order energy of  

 E1s,1s
0 = −Ryd   Z

2

12
+ Z

2

12
⎛
⎝⎜

⎞
⎠⎟
= −4  Ryd   1

12
+ 1
12

⎛
⎝⎜

⎞
⎠⎟ = −8 Ryd = −108.8eV  

The helium ground state is non-degenerate, so we find the shift caused by the perturbation by 
finding the expectation value of the perturbation in the zeroth-order state 

 
E1s,1s
1 = ψ 1s,1s

SA H 1 ψ 1s,1s
SA = ψ 1s,1s

S e2

r12
ψ 1s,1s

S

= ψ 100
* r1( )ψ 100

* r2( )∫∫
e2

r1 − r2
ψ 100 r2( )ψ 100 r1( )d 3r1d 3r2

 

The ground state wave function is (Z = 2)  

 ψ 100 r,θ,φ( ) = Z 3

πa0
3 e

−Zr a0  

Use the spherical harmonic addition theorem 

 
 

1
r1 − r2

= 4π
2 +1

r<


r>
+1 Y

m* θ1,φ1( )
m=−



∑
=0

∞

∑  Y
m θ2 ,φ2( )  

where r> stands for the larger of the two distances r1 and r2, and r< the smaller .  Putting this all 
together gives 
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E1s,1s
1 = Z 6e2

π 2a0
6 e−2Zr1 a0e−2Zr2 a0 4π

2+1
r<


r>
+1 Ym

* θ1,φ1( )
m=−



∑
=0

∞

∑  Ym θ2,φ2( )d 3r1d 3r2∫∫

= Z 6e2

π 2a0
6

4π
2+1

e−2Z r1+r2( ) a0 r<


r>
+1 Ym

* θ1,φ1( )Ym θ2,φ2( )d 3r1d 3r2  ∫∫
m=−



∑
=0

∞

∑
 

Recall that Y0
0 θ,φ( ) = 1 4π  and separate the integrals to get  

 

 

E1s,1s
1 = Z 6e2

π 2a0
6

4π( )2
2+1

e−2Z r1+r2( ) a0 r<


r>
+1 r1

2 dr1r2
2 dr10

∞

∫0

∞

∫
m=−



∑
=0

∞

∑
                × Y

m* θ1,φ1( )Y00* θ1,φ1( )dΩ1∫ Y0
0* θ2,φ2( )Ym θ2,φ2( )dΩ2∫

 

The spherical harmonics are orthonormal, so the angular integrals require that   = 0  and m = 0 , 
giving 

 

E1s,1s
1 = 16Z

6e2

a0
6 e−2Z r1+r2( ) a0 1

r>
r1
2 dr1r2

2 dr20

∞

∫0

∞

∫

= 16Z
6e2

a0
6 e−2Zr1 a0r1

2 dr10

∞

∫
1
r1

e−2Zr2 a0r2
2 dr20

r1∫ + e−2Zr2 a0 1
r2
r2
2 dr2r1

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥

= 16Z
6e2

a0
6 e−2Zr1 a0r1

2 dr10

∞

∫

1
r1

a0
4Z 3

⎛
⎝⎜

⎞
⎠⎟ a0

2 − e−2Zr1 a0 a0
2 + 2a0r1Z + 2r1

2Z 2{ }( )
+ a0
4Z 2

⎛
⎝⎜

⎞
⎠⎟ e

−2Zr1 a0 a0 + 2r1Z{ }

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 4Z
3e2

a0
5

a0
2e−2Zr1 a0 − e−4Zr1 a0 a0

2 + 2a0r1Z + 2r1
2Z 2{ }( )r1 dr10

∞

∫ +

+ e−4Zr1 a0 a0Z + 2r1Z
2( )r12 dr10

∞

∫

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= 4Z
3e2

a0
5

a0
4

4Z 2
− a0

4

16Z 2
− a0

4

16Z 2
− 3a0

4

64Z 2
+ a0

4

32Z 2
+ 3a0

4

64Z 2
⎡

⎣
⎢

⎤

⎦
⎥

= 5Ze
2

8a0
= 5
8

Ze2

a0

⎛
⎝⎜

⎞
⎠⎟

 

Numerically, we get 

 E1s,1s
1 = 5

8
Z e2

a0

⎛
⎝⎜

⎞
⎠⎟
= 5
8
2 2Ryd( ) = 5

2
Ryd = 5

2
13.6eV = 34eV  

The new energy is 

 E ≅ E1s,1s
0 + E1s,1s

1 = −8Ryd + 5
2
Ryd = −5.5Ryd = −5.5 13.6eV( ) = −74.8eV  

Another way to solve it is to follow the author's hint, which only works for spherically 
symmetric wave functions.  The idea is to find the electrostatic interaction energy between the 
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two spherically symmetric charge distributions ρ1 r1( )  and ρ2 r2( )  of the two electrons.  From 
Gauss's law, we know that a charge dq1 = ρ1 r1( )dV1  interacts with the charge q2 r1( ) = dq2∫  
enclosed within its radius, but not with the charge outside its radius.  This energy is 

 E1 =
q2 r1( )dq1

r1∫ =
dq2∫{ }dq1
r1∫  

Of course, we can make the same argument with 1 and 2 swapped, so we get twice this energy.  
The key aspect is to get the limits right.  We integrate dq2  from 0 to r1  and then we integrate dq1  
from 0 to ∞ .  Hence the energy shift is 

 

E1s,1s
1 = 2

dq2∫{ }dq1
r1∫ = 2

ρ2 r2( )dV20

r1∫{ }ρ1 r1( )dV1
r10

∞

∫

= 2 1
r10

∞

∫ eψ 100 r1( )2 4πr12dr1 eψ 100 r2( )2 4πr22 dr20

r1∫{ }
= 32e

2Z 6

a0
6

1
r10

∞

∫ e−2Zr1 a0r1
2dr1 e−2Zr2 a0r2

2 dr20

r1∫{ }
= 32e

2Z 6

a0
6

1
r10

∞

∫ e−2Zr1 a0r1
2 a0

3

4Z 3 1− e
−2Zr1 a0 1+ 2Zr1

a0
+ 2Z

2r1
2

a0
2

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dr1

= 8e
2Z 3

a0
3 e−2Zr1 a0r1 1− e−2Zr1 a0 1+ 2Zr1

a0
+ 2Z

2r1
2

a0
2

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dr10

∞

∫

= 8e
2Z 3

a0
3

5a0
2

64Z 2
⎛
⎝⎜

⎞
⎠⎟

= 5e
2Z
8a0

 

as above. 
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17.3.2 For a spin-1 system with a Hamiltonian 

 H = ASz
2 + B Sx

2 − Sy
2( )  

with A >> B, we identify the first term as the unperturbed Hamiltonian and the second term as 
the perturbation Hamiltonian.  Hence 

 

 

H 0 = ASz
2  A2

1 0 0
0 0 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

Because the unperturbed Hamiltonian is diagonal, we know the zeroth-order energies and 
eigenstates by inspection: 

 

 

E1
0 = A2 10 = m = 1

E2
0 = 0 20 = m = 0

E3
0 = A2 30 = m = −1

 

So the system is degenerate.  For the nondegenerate state 20 , the first-order correction to the 
energy is the expectation value of the perturbation in the unperturbed state: 

 E2
1 = 20 H 1 20   

For the degenerate states, we must diagonalize the matrix representing H 1  in the degenerate 
subspace.  The full matrix of the perturbation is 

 

 

H 1 = B Sx
2 − Sy

2( )  B 
2

2

1 0 1
0 2 0
1 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
−

1 0 −1
0 2 0
−1 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

 B2
0 0 1
0 0 0
1 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

By inspection, we get 

 E2
1 = 20 H 1 20 = 0   

In the degenerate subspace, we have 

 
 
H 1  B2 0 1

1 0
⎛
⎝⎜

⎞
⎠⎟

 

Diagonalize: 

 
 

0 − λ B2

B2 0 − λ
= 0  

and solving yields the eigenvalues 
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λ 2 − B2( )2 = 0
E1,3
1 = ±B2

 

The perturbed energies to first order in B are 

 

 

E1 ≅ E1
0 + E1

1 = A2 + B2

E2 ≅ E2
0 + E2

1 = 0
E3 ≅ E3

0 + E3
1 = A2 − B2

 

We can solve the problem exactly by diagonalizing the full Hamiltonian 

 

 

H = H0 + H
1 = ASz

2 + B Sx
2 − Sy

2( )  A2
1 0 0
0 0 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ B2

0 0 1
0 0 0
1 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟


A2 0 B2

0 0 0
B2 0 A2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

Diagonalize: 

 

 

A2 − λ 0 B2

0 −λ 0
B2 0 A2 − λ

= 0  

and solving yields the eigenvalues 

 

 

−λ A2 − λ( )2 + λ B2( )2 = 0
λ A2 − λ( )2 − B2( )2⎡
⎣

⎤
⎦ = 0 ⇒ λ = 0 or

A2 − λ = ±B2

λ = A2 ± B2

 

The exact energies are 

 

 

E1 = A
2 + B2

E2 = 0
E3 = A

2 − B2
 

Hence the perturbation calculation to first order gives the exact values. 
 


