1. The expectation value of the energy is

$$
\langle H\rangle=\frac{\left\langle P^{2}\right\rangle}{2 m}+\frac{1}{2} m \omega^{2}\left\langle X^{2}\right\rangle
$$

Assume that $\langle P\rangle=0$ and $\langle X\rangle=0$ and use $\left\langle\Omega^{2}\right\rangle=(\Delta \Omega)^{2}+\langle\Omega\rangle^{2}$ to get

$$
\langle H\rangle=\frac{(\Delta P)^{2}}{2 m}+\frac{1}{2} m \omega^{2}(\Delta X)^{2}
$$

Assuming the uncertainty relation $\Delta P \Delta X \geq \hbar / 2$, we then have

$$
\langle H\rangle \geq \frac{\hbar^{2}}{8 m(\Delta X)^{2}}+\frac{1}{2} m \omega^{2}(\Delta X)^{2}
$$

Minimizing this with respect to ΔX, gives

$$
\frac{d\langle H\rangle}{d(\Delta X)}=\frac{-2 \hbar^{2}}{8 m(\Delta X)^{3}}+m \omega^{2}(\Delta X)=0 \quad \Rightarrow \quad(\Delta X)=\left(\frac{\hbar}{2 m \omega}\right)^{1 / 2}
$$

The resultant energy is

$$
\langle H\rangle \geq \frac{\hbar^{2}}{8 m(\hbar / 2 m \omega)}+\frac{1}{2} m \omega^{2}\left(\frac{\hbar}{2 m \omega}\right)=\frac{1}{2} \hbar \omega,
$$

which is (miraculously) the correct energy.
2. a) For three particles with 2 possible single-particle states, there are $2^{3}=8$ possible threeparticle states:

$$
|a a a\rangle,|a a b\rangle,|a b a\rangle,|b a a\rangle,|a b b\rangle,|b a b\rangle,|b b a\rangle,|b b b\rangle
$$

Symmetrizing these gives $\left(S=\frac{1}{6}\left(P_{123}+P_{132}+P_{213}+P_{231}+P_{312}+P_{321}\right)\right)$

$$
\begin{aligned}
S|a a a\rangle & =\frac{1}{6}(|a a a\rangle+|a a a\rangle+|a a a\rangle+|a a a\rangle+|a a a\rangle+|a a a\rangle)=|a a a\rangle \\
S|a a b\rangle & =\frac{1}{3}(|a a b\rangle+|a b a\rangle+|b a a\rangle) \\
S|a b a\rangle & =\frac{1}{3}(|a a b\rangle+|a b a\rangle+|b a a\rangle) \\
S|b a a\rangle & =\frac{1}{3}(|a a b\rangle+|a b a\rangle+|b a a\rangle) \\
S|a b b\rangle & =\frac{1}{3}(|a b b\rangle+|b a b\rangle+|b b a\rangle) \\
S|b a b\rangle & =\frac{1}{3}(|a b b\rangle+|b a b\rangle+|b b a\rangle) \\
S|b b a\rangle & =\frac{1}{3}(|a b b\rangle+|b a b\rangle+|b b a\rangle) \\
S|b b b\rangle & =|b b b\rangle
\end{aligned}
$$

There are 4 physically different states. Normalizing gives the states

$$
\begin{aligned}
& |a a a, S\rangle=|a a a\rangle \\
& |a a b, S\rangle=\frac{1}{\sqrt{3}}(|a a b\rangle+|a b a\rangle+|b a a\rangle) \\
& |a b b, S\rangle=\frac{1}{\sqrt{3}}(|a b b\rangle+|b a b\rangle+|b b a\rangle) \\
& |b b b, S\rangle=|b b b\rangle
\end{aligned}
$$

For the antisymmetric states, we get $\left(A=\frac{1}{6}\left(P_{123}-P_{132}+P_{231}-P_{213}+P_{312}-P_{321}\right)\right)$

$$
\begin{aligned}
& A|a a a\rangle=\frac{1}{6}(|a a a\rangle-|a a a\rangle+|a a a\rangle-|a a a\rangle+|a a a\rangle-|a a a\rangle)=0 \\
& A|a a b\rangle=\frac{1}{6}(|a a b\rangle-|a b a\rangle+|a b a\rangle-|a a b\rangle+|b a a\rangle-|b a a\rangle)=0 \\
& A|a b a\rangle=\frac{1}{6}(|a b a\rangle-|a a b\rangle+|b a a\rangle-|b a a\rangle+|a a b\rangle-|a b a\rangle)=0 \\
& A|b a a\rangle=\frac{1}{6}(|b a a\rangle-|b a a\rangle+|a a b\rangle-|a b a\rangle+|a b a\rangle-|a a b\rangle)=0 \\
& A|a b b\rangle=\frac{1}{6}(|a b b\rangle-|a b b\rangle+|b b a\rangle-|b a b\rangle+|b a b\rangle-|b b a\rangle)=0 \\
& A|b a b\rangle=\frac{1}{6}(|b a b\rangle-|b b a\rangle+|a b b\rangle-|a b b\rangle+|b b a\rangle-|b a b\rangle)=0 \\
& A|b b a\rangle=\frac{1}{6}(|b b a\rangle-|b a b\rangle+|b a b\rangle-|b b a\rangle+|a b b\rangle-|a b b\rangle)=0 \\
& A|b b b\rangle=\frac{1}{6}(|b b b\rangle-|b b b\rangle+|b b b\rangle-|b b b\rangle+|b b b\rangle-|b b b\rangle)=0
\end{aligned}
$$

All of the states are null vectors, so there are 0 antisymmetric states.
b) There are 8 states in the direct product Hilbert space. The symmetric space has 4 states and the antisymmetric space has 0 states, so the number of states in the symmetric space is greater than the number of states in the antisymmetric space. Collectively, the symmetric space and the antisymmetric space (total 4 states) do not cover the direct product Hilbert space (total 8 states).
3. (a) Find $\left|\psi_{\varepsilon}\right\rangle=T(\varepsilon)|\psi\rangle$ in the position representation:

$$
\begin{aligned}
\psi_{\varepsilon}(x) & =\left\langle x \mid \psi_{\varepsilon}\right\rangle=\langle x| T(\varepsilon)|\psi\rangle \\
& =\langle x| T(\varepsilon)\left\{\int\left|x^{\prime}\right\rangle\left\langle x^{\prime}\right| d x^{\prime}\right\}|\psi\rangle \\
& =\int\langle x| T(\varepsilon)\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid \psi\right\rangle d x^{\prime} \\
& =\int\left\langle x \mid x^{\prime}+\varepsilon\right\rangle\left\langle x^{\prime} \mid \psi\right\rangle d x^{\prime} \\
& =\int \delta\left(x-\left(x^{\prime}+\varepsilon\right)\right) \psi\left(x^{\prime}\right) d x^{\prime} \\
& =\int \delta\left(x^{\prime}-(x-\varepsilon)\right) \psi\left(x^{\prime}\right) d x^{\prime} \\
& =\psi(x-\varepsilon)
\end{aligned}
$$

Now use Taylor series expansion

$$
\begin{aligned}
\langle x| T(\varepsilon)|\psi\rangle & =\psi(x-\varepsilon) \\
& =\psi(x)-\left.\varepsilon \frac{d \psi}{d x}\right|_{x}+\mathcal{O}\left(\varepsilon^{2}\right)
\end{aligned}
$$

and put in the generator form;

$$
\begin{aligned}
& \langle x| I-\frac{i}{\hbar} \varepsilon G|\psi\rangle=\psi(x)-\varepsilon \frac{d \psi}{d x} \\
& \psi(x)-\frac{i}{\hbar} \varepsilon\langle x| G|\psi\rangle=\psi(x)-\varepsilon \frac{d \psi}{d x} \\
& \Rightarrow\langle x| G|\psi\rangle=-i \hbar \frac{d \psi}{d x}
\end{aligned}
$$

We know that the momentum operator in the position representation is

$$
P \doteq-i \hbar \frac{d}{d x}
$$

Hence we can conclude that

$$
G=P
$$

b) A system is translationally invariant if

$$
\langle\psi| H|\psi\rangle=\left\langle\psi_{\varepsilon}\right| H\left|\psi_{\varepsilon}\right\rangle
$$

Using the infinitesimal transformation

$$
\begin{aligned}
\langle\psi| H|\psi\rangle & =\left\langle\psi_{\varepsilon}\right| H\left|\psi_{\varepsilon}\right\rangle \\
& =\left\langle T(\varepsilon) \psi_{\varepsilon}\right| H\left|T(\varepsilon) \psi_{\varepsilon}\right\rangle \\
& =\left\langle\psi_{\varepsilon}\right| T^{\dagger}(\varepsilon) H T(\varepsilon)|\psi\rangle
\end{aligned}
$$

Now put in the generator form

$$
\begin{aligned}
\langle\psi| H|\psi\rangle & =\langle\psi| T^{\dagger}(\varepsilon) H T(\varepsilon)|\psi\rangle \\
& =\langle\psi|\left(I-\frac{i \varepsilon}{\hbar} P\right)^{\dagger} H\left(I-\frac{i \varepsilon}{\hbar} P\right)|\psi\rangle \\
& =\langle\psi|\left(I+\frac{i \varepsilon}{\hbar} P\right) H\left(I-\frac{i \varepsilon}{\hbar} P\right)|\psi\rangle \\
& =\langle\psi| H-\frac{i \varepsilon}{\hbar} H P+\frac{i \varepsilon}{\hbar} P H+\frac{\varepsilon^{2}}{\hbar^{2}} P H P|\psi\rangle
\end{aligned}
$$

Neglect the term of second order in the small quantity ε to get

$$
\begin{aligned}
& \langle\psi| H|\psi\rangle=\langle\psi| H|\psi\rangle+\frac{i \varepsilon}{\hbar}\langle\psi|[P, H]|\psi\rangle \\
& \Rightarrow\langle\psi|[P, H]|\psi\rangle=\langle[P, H]\rangle=0
\end{aligned}
$$

Ehernfest's theorem applied here is

$$
\frac{d}{d t}\langle P\rangle=\frac{1}{i \hbar}\langle[P, H]\rangle+\left\langle\frac{\partial P}{\partial t}\right\rangle
$$

We assume that the operator P has no explicit time dependence, which eliminates the last term. Because translational invariance implies $\langle[P, H]\rangle=0$, then the expectation value does not change with time (it is conserved):

$$
\frac{d}{d t}\langle P\rangle=0
$$

