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12.3.4  The eigenstates of Lz are 

 
   
m  Φm(φ) = 1

2π
eimφ  

It is useful to write the wave function in terms of these eigenstates, giving 

 

  

ψ ρ,φ( ) = Ae−ρ2 2Δ2 ρ
Δ

cosφ + sinφ
⎛
⎝⎜

⎞
⎠⎟

= Ae−ρ2 2Δ2 ρ
Δ

eiφ + e− iφ

2
+ eiφ − e− iφ

2i
⎛
⎝⎜

⎞
⎠⎟

= A
2

e−ρ2 2Δ2

eiφ ρ
Δ
− i

⎛
⎝⎜

⎞
⎠⎟
+ e− iφ ρ

Δ
+ i

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

 

To find the probability of measuring Lz we project the wave function onto the Lz eigenstate in 
question, square the amplitude, and then sum over all possible ways to obtain that probability.  If 
the state was expanded in terms of discrete basis states nm , where the eigenvalues n refer to the 
other commuting observable (e.g. H), then we would express this as 

 
   
PLz=mh = nmψ

2

n=1

∞

∑   

By inspection, we see that only the m = 1 and m = -1 states have non-zero probability.  Without 
knowing the n basis states, we can proceed in a general way.  Let the radial basis states be 
Rnm ρ( ) .  Write the wave function above in terms of two new radial functions  

 

  

ψ ρ,φ( ) = eiφ

2π
f ρ( )− ig ρ( )⎡⎣ ⎤⎦ +

e− iφ

2π
f ρ( ) + ig ρ( )⎡⎣ ⎤⎦

f ρ( ) = 2π A
2

e−ρ2 2Δ2 ρ
Δ

g ρ( ) = 2π A
2

e−ρ2 2Δ2

 

and expand each of these radial functions in the Rnm ρ( )  basis 

 

  

f ρ( ) = anmRnm ρ( )
n,m
∑

g ρ( ) = bnmRnm ρ( )
n,m
∑

 

These are all real functions, so the coefficients are real.  The probability in integral form is 

 
   
PLz=mh = Rnm

* ρ( )Φm
* φ( )ψ ρ,φ( )dφ

0

2π

∫ ρ dρ
0

∞

∫
2

n=1

∞

∑   
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Note that the two integrals are inside the absolute value to find probability amplitudes (say cnm ) 

and the sum is outside to add up all the possible probabilities ( cnm
2

n
∑ ).  For m = 1, the angular 

projection selects just the  m = 1 term, leaving the radial part that goes with it:  

 

   

PLz=1h = Rn1
* ρ( ) f ρ( )− ig ρ( )⎡⎣ ⎤⎦ ρ dρ

0

∞

∫
2

n=1

∞

∑  

= Rn1
* ρ( ) arsRrs ρ( )

r ,s
∑ − i brsRrs ρ( )

r ,s
∑⎡

⎣
⎢

⎤

⎦
⎥ ρ dρ

0

∞

∫
2

n=1

∞

∑  

= an1 − ibn1

2

n=1

∞

∑

= an1
2 + bn1

2

n=1

∞

∑

 

Note that a and b are real.  For m = -1, we get 

 

   

PLz=−1h = Rn,−1
* ρ( ) f ρ( ) + ig ρ( )⎡⎣ ⎤⎦ ρ dρ

0

∞

∫
2

n=1

∞

∑

= Rn,−1
* ρ( ) arsRrs ρ( )

r ,s
∑ + i brsRrs ρ( )

r ,s
∑⎡

⎣
⎢

⎤

⎦
⎥ ρ dρ

0

∞

∫
2

n=1

∞

∑  

= an,−1 + ibn,−1

2

n=1

∞

∑

= an,−1
2 + bn,−1

2

n=1

∞

∑

 

The two probabilities appear to be different because the m values differ.  But the differential 
equation that determines the Rnm ρ( )  basis states (see Eq. 12.3.13) includes an m2 term and so 
cannot differentiate between positive and negative values of m.  Thus the two probabilities for 
m = 1 and m = -1 must be equal.  Because these two probabilities must add to 1, they are each 
equal to ½. 

 

   

PLz=+1h =
1
2

PLz=−1h =
1
2

 

We could also solve the problem by using the continuous radial coordinate basis ρ  and 
integrating over all possible values of that eigenvalue (see Eqn. 12.5.38 for 3D example): 

 

   

PLz=mh = ρmψ
2
ρ dρ

0

∞

∫
= Φm

* φ( )ψ ρ,φ( )dφ
0

2π

∫
2

ρ dρ
0

∞

∫
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Note that the angular integral is inside the absolute value to find the radial probability amplitude 
density (say cm ρ( ) ) and the radial integral is outside to add up all the possible probabilities 

( cm ρ( ) 2 ρ dρ∫ ).  For the wave function given above, this results in 

 
   
PLz=mh =

1
2π

e− imφ A
2

e−ρ2 2Δ2

eiφ ρ
Δ
− i

⎛
⎝⎜

⎞
⎠⎟
+ e− iφ ρ

Δ
+ i

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥dφ

0

2π

∫
2

ρ dρ
0

∞

∫  

For m = 1, we get 

 

   

PLz=mh = 2π A
2

e−ρ2 2Δ2 ρ
Δ
− i

⎛
⎝⎜

⎞
⎠⎟

2

ρ dρ
0

∞

∫

= 2π
A

2

4
e−ρ2 Δ2 ρ2

Δ2 +1
⎛
⎝⎜

⎞
⎠⎟
ρ dρ

0

∞

∫
 

For m = -1, we get 

 

   

PLz=−mh = 2π A
2

e−ρ2 2Δ2 ρ
Δ
+ i

⎛
⎝⎜

⎞
⎠⎟

2

ρ dρ
0

∞

∫

= 2π
A

2

4
e−ρ2 Δ2 ρ2

Δ2 +1
⎛
⎝⎜

⎞
⎠⎟
ρ dρ

0

∞

∫
 

No need to do the integrals.  We see that the two probabilities are equal and we know from 
inspection of the wave function that there are no other possible values of Lz.  Hence, these two 
probabilities must add to 1, so they are each ½. 
 
12.3.6  There is no potential energy here, so the energy is all kinetic.  The energy of a classical 
particle rotating in a circular path in the x, y  plane with a radius a is 

 
   
E = K = 1

2 µv2 = p2

2µ
=

pa( )2

2µa2 =
 z

2

2µa2  

Hence the quantum mechanical Hamiltonian is  

 
  
H =

Lz
2

2I
 

where   I = µa2  is the moment of inertia. The eigenvalue equation is 
 H ψ = E ψ  

Writing this in the coordinate basis yields 

 

   

− 
2

2I
∂2

∂φ 2ψ ρ,φ( ) = Eψ ρ,φ( )
∂2

∂φ 2ψ ρ,φ( ) = − 2IE
2 ψ ρ,φ( )
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The solutions to this differential equation are the complex exponentials 

    ψ ρ,φ( ) = NR ρ( )e
± i 2 IE



⎛

⎝
⎜

⎞

⎠
⎟φ

 
where  N  is the normalization constant and R ρ( )  is an arbitrary radial function.  Now impose 
the condition (Eq. 12.3.6) 

  ψ ρ,0( ) =ψ ρ,2π( )  
which requires that the factoring multiplying the angle be an integer: 

 
   
± 2IE


= 0,±1,±2,…  

It is common to call this integer m and the write the solutions as 
    ψ ρ,φ( ) = NR ρ( )eimφ ; m = 0,±1,±2,…  

The quantum number  m  is the orbital magnetic quantum number used to identify the eigenstates 
of  Lz , which obey the eigenvalue equation    Lz | m〉 = m| m〉 .  We can now identify the energy 
eignevalues as 

 
   
E m = m2 

2

2I
 

These energy states are two-fold degenerate (except m = 0) because the energy is the same 
whether the particle rotates in a clockwise or a counterclockwise direction.  Another way to see 
this is to note that the  m  eigenstates of  Lz  are also eigenstates of   Lz

2 : 
 

   
Lz

2 m = m22 m  

but the  m  and  −m  states have the same   Lz
2  eignevalue.  Because   H = Lz

2 2I , they must also 
have the same energy eignevalue. 
 
 
12.5.2  The matrices for spin ½ are (can use S or J labels here) 

 
Sx    

2
0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

Sy    
2

0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

Sz    
2

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

 

 
S2 

32

4
1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

S+     0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

S−     0 0
1 0

⎛
⎝⎜

⎞
⎠⎟

 

For angular momentum 1, the matrices are 

 

Jx    
2

0 1 0
1 0 1
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Jy    
2

0 −i 0
i 0 −i
0 i 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Jz    
1 0 0
0 0 0
0 0 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

 

J2  22
1 0 0
0 1 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

J+    2
0 1 0
0 0 1
0 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

J−    2
0 0 0
1 0 0
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

For spin 3/2, the matrices are 
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Sx 

2

0 3 0 0
3 0 2 0
0 2 0 3
0 0 3 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Sy 

2

0 −i 3 0 0
i 3 0 −i2 0
0 i2 0 −i 3
0 0 i 3 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Sz  

+ 3
2 0 0 0
0 + 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 

 

S2  15
4 

2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

S+  

0 3 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

S−  

0 0 0 0
3 0 0 0
0 2 0 0
0 0 3 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

For j = 1/2, the commutator we want is  

 

 

[Sx ,Sy ] 

2

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

2

0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟
  −  

2
0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

2

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟



2

⎛
⎝⎜

⎞
⎠⎟

2
i 0
0 −i

⎛
⎝⎜

⎞
⎠⎟
− −i 0

0 i
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



2

⎛
⎝⎜

⎞
⎠⎟

2
2i 0
0 −2i

⎛
⎝⎜

⎞
⎠⎟
 i 

2
⎛
⎝⎜

⎞
⎠⎟

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

=  iSz

 

For j = 1, the commutator is  

 

 

[Jx , Jy ]

2

0 1 0
1 0 1
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2

0 −i 0
i 0 −i
0 i 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
  −   

2

0 −i 0
i 0 −i
0 i 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2

0 1 0
1 0 1
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟


2

2

i 0 −i
0 0 0
i 0 −i

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
−

−i 0 −i
0 0 0
i 0 i

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥


2

2

2i 0 0
0 0 0
0 0 −2i

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
 i

1 0 0
0 0 0
0 0 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=  iJz

 

For j = 3/2, the commutator we want is  
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[Sx ,Sy ]

2

0 3 0 0
3 0 2 0

0 2 0 3
0 0 3 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟


2

0 −i 3 0 0
i 3 0 −i2 0

0 i2 0 −i 3
0 0 i 3 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

  −

  
2

0 −i 3 0 0
i 3 0 −i2 0

0 i2 0 −i 3
0 0 i 3 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟


2

0 3 0 0
3 0 2 0

0 2 0 3
0 0 3 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟



2

⎛
⎝⎜

⎞
⎠⎟

2

3i 0 −i2 3 0
0 i 0 −i2 3

i2 3 0 −i 0
0 i2 3 0 −3i

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

−

−3i 0 −i2 3 0
0 −i 0 −i2 3

i2 3 0 i 0
0 i2 3 0 3i

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥



2

⎛
⎝⎜

⎞
⎠⎟

2
6i 0 0 0
0 2i 0 0
0 0 −2i 0
0 0 0 −6i

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 i

+ 3
2 0 0 0

0 + 1
2 0 0

0 0 − 1
2 0

0 0 0 − 3
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=  iSz

 

 
12.5.13  The spherical harmonics we want are 

 

   

Y1
0 θ ,φ( ) = 3

4π
cosθ

Y1
±1 θ ,φ( ) =  3

8π
sinθe± iφ

 

To write these in Cartesian coordinates, use 

 

  

z = r cosθ
x = r sinθ cosφ
y = r sinθ sinφ

 

to get 

 

   

Y1
0 θ ,φ( ) = 3

4π
cosθ = 3

4π
z
r

Y1
±1 θ ,φ( ) =  3

8π
sinθe± iφ =  3

8π
sinθ cosφ ± isinφ( ) =  3

4π
x ± iy( )

2r
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Invert these to get 

 

  

z = 4π
3

rY1
0 θ ,φ( )

x = 4π
3

2r
1
2

Y1
−1 θ ,φ( )−Y1

1 θ ,φ( )⎡⎣ ⎤⎦

y = 4π
3

2r
1
−2i( ) Y1

−1 θ ,φ( ) +Y1
1 θ ,φ( )⎡⎣ ⎤⎦

 

Now rewrite the wave function using these expressions 

  

ψ = N x + y + 2z( )e−αr

= N
4π
3

2r
1
2

Y1
−1 θ ,φ( )−Y1

1 θ ,φ( )⎡⎣ ⎤⎦ + 2r
1
−2i( ) Y1

−1 θ ,φ( ) +Y1
1 θ ,φ( )⎡⎣ ⎤⎦ + 2rY1

0 θ ,φ( )⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
e−αr

= N
4π
3

re−αr i −1
2

Y1
1 θ ,φ( ) + i +1

2
Y1

−1 θ ,φ( ) + 2Y1
0 θ ,φ( )⎧

⎨
⎩

⎫
⎬
⎭

 

To find the probability of measuring Lz, project the wave function onto the Lz eigenstate in 
question, square the amplitude, and then sum over all possible ways to obtain that probability.  If 
the state was expanded in terms of discrete basis states  nm , where the eigenvalues n refer to 
the other commuting observable (e.g. H), then we would express this as 

 
    
PLz=mh = nmψ

2

=0

∞

∑
n=1

∞

∑   

For the wave function above, we have written it in a way to make the  m  aspect obvious, but 
we are using the continuous radial coordinate basis r .  In that case we must integrate over all 
possible values of that eigenvalue (see Eqn. 12.5.38): 

 
    
PLz=mh = rmψ

2
r 2 dr

0

∞

∫
=0

∞

∑  

Now rewrite the angular part of the wave function expression above in terms of the  m  
eigenstates, giving 

    

PLz=mh = m N 4π
3

re−αr i −1
2

11 + i +1
2

1,−1 + 2 10
⎧
⎨
⎩

⎫
⎬
⎭

2

r 2 dr
0

∞

∫
=0

∞

∑

= N
2 4π

3
m i −1

2
11 + i +1

2
1,−1 + 2 10

⎧
⎨
⎩

⎫
⎬
⎭

2

r 2e−2αrr 2 dr
0

∞

∫
=0

∞

∑

= N
2 4π

3
δ 1

i −1
2
δm1 +

i +1
2
δm,−1 + 2δm0

⎛
⎝⎜

⎞
⎠⎟

2

e−2αrr 4 dr
0

∞

∫
=0

∞

∑
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Note that (1) the square of a Kronecker delta is the same Kronecker delta because 02 = 0  and 
12 = 1 , (2) there are no cross terms in the square of a sum of Kronecker deltas because they are 
mutually exclusive, and (3) the Kronecker delta  δ 1  collapses the sum.  Hence we get  

   

PLz=mh = N
2 4π

3
δm1

i −1
2

2

+δm,−1

i +1
2

2

+δm0 2
2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
e−2αrr 4 dr

0

∞

∫

= N
2 4π

3
δm1 +δm,−1 + 4δm0{ } e−2αrr 4 dr

0

∞

∫
 

Thus the three probabilities are 

   

PLz=+1h = 1 N
2 4π

3
e−2αrr 4 dr

0

∞

∫
⎧
⎨
⎩

⎫
⎬
⎭

PLz=−1h = 1 N
2 4π

3
e−2αrr 4 dr

0

∞

∫
⎧
⎨
⎩

⎫
⎬
⎭

PLz=0h = 4 N
2 4π

3
e−2αrr 4 dr

0

∞

∫
⎧
⎨
⎩

⎫
⎬
⎭

 

We could do the integral in the curly bracket and then find N, noting that the sum of these three 
probabilities must sum to unity.  But why use up our precious brain cells?  The terms in the curly 
brackets are identical, so we can normalize with an overall factor of 1/6 to get: 

   

PLz=+1h =
1
6

PLz=−1h =
1
6

PLz=0h =
4
6
= 2

3

 
















