1. 12.3 .4, p. 315 from Shankar
2. 12.3 .6, p. 316 from Shankar
3. 12.5 .2 , p. 329 from Shankar. For the three cases: $j=1 / 2, j=1$, and $j=3 / 2$, write down all 6 matrices representing $J^{2}, J_{x}, J_{y}, J_{z}, J_{+}$, and J_{-}.
4. $\quad 12.5 .13$, p. 338 from Shankar
5. Consider a system described by the Hamiltonian

$$
H=\varepsilon_{\alpha} a^{\dagger} a+\varepsilon_{\beta} b^{\dagger} b+g\left(a^{\dagger} b+b^{\dagger} a\right)
$$

where the operators a and b satisfy the relations

$$
\begin{aligned}
& a^{\dagger} a+a a^{\dagger}=b^{\dagger} b+b b^{\dagger}=1 \\
& a a=b b=0 \\
& {[a, b]=\left[a, b^{\dagger}\right]=0}
\end{aligned}
$$

The operators $N_{\alpha}=a^{\dagger} a, N_{\beta}=b^{\dagger} b$, and $N=N_{\alpha}+N_{\beta}$ are observables, and N_{α} and N_{β} constitute a complete set of commuting operators.
a) Using the operator equations above, find the eigenvalues of N_{α}.
b) Show that N is a constant of the motion.
c) Find the energy eigenvalues of the system.

