11 February 2016

Homework 4

Due Wednesday 24 February

- 1. 12.3.4, p. 315 from Shankar
- 2. 12.3.6, p. 316 from Shankar
- 3. 12.5.2, p. 329 from Shankar. For the three cases: $j = \frac{1}{2}$, j = 1, and $j = \frac{3}{2}$, write down all 6 matrices representing J^2 , J_x , J_y , J_z , J_+ , and J_- .
- 4. 12.5.13, p. 338 from Shankar
- 5. Consider a system described by the Hamiltonian

$$H = \varepsilon_{\alpha} a^{\dagger} a + \varepsilon_{\beta} b^{\dagger} b + g \left(a^{\dagger} b + b^{\dagger} a \right)$$

where the operators a and b satisfy the relations

$$a^{\dagger}a + aa^{\dagger} = b^{\dagger}b + bb^{\dagger} = 1$$
$$aa = bb = 0$$
$$[a,b] = [a,b^{\dagger}] = 0$$

The operators $N_{\alpha} = a^{\dagger}a$, $N_{\beta} = b^{\dagger}b$, and $N = N_{\alpha} + N_{\beta}$ are observables, and N_{α} and N_{β} constitute a complete set of commuting operators.

- a) Using the operator equations above, find the eigenvalues of N_{α} .
- b) Show that N is a constant of the motion.
- c) Find the energy eigenvalues of the system.