1.6.2 $\Omega$ and $\Lambda$ are Hermitian $\left(\Omega=\Omega^{\dagger}\right.$ and $\left.\Lambda=\Lambda^{\dagger}\right)$.
(1) Consider the adjoint of the product:

$$
\begin{aligned}
(\Omega \Lambda)^{\dagger} & =\Lambda^{\dagger} \Omega^{\dagger} \\
& =\Lambda \Omega
\end{aligned}
$$

(2) For the sum of the products, we get

$$
\begin{aligned}
(\Omega \Lambda+\Lambda \Omega)^{\dagger} & =(\Omega \Lambda)^{\dagger}+(\Lambda \Omega)^{\dagger} \\
& =\Lambda^{\dagger} \Omega^{\dagger}+\Omega^{\dagger} \Lambda^{\dagger} \\
& =\Lambda \Omega+\Omega \Lambda \\
& =\Omega \Lambda+\Lambda \Omega
\end{aligned}
$$

Hence, the sum of the products of two Hermitian operators is itself Hermitian.
(3) For the commutator, we get

$$
\begin{aligned}
{[\Omega, \Lambda] } & =\Omega \Lambda-\Lambda \Omega \\
{[\Omega, \Lambda]^{\dagger} } & =(\Omega \Lambda-\Lambda \Omega)^{\dagger} \\
& =(\Omega \Lambda)^{\dagger}-(\Lambda \Omega)^{\dagger} \\
& =\Lambda^{\dagger} \Omega^{\dagger}-\Omega^{\dagger} \Lambda^{\dagger} \\
& =\Lambda \Omega-\Omega \Lambda \\
& =-(\Omega \Lambda-\Lambda \Omega)
\end{aligned}
$$

Hence, the commutator of two Hermitian operators is anti-Hermitian $\left(A=-A^{\dagger}\right)$.
(4) If we multiply the commutator by $i$, then we get

$$
\begin{aligned}
{[\Omega, \Lambda] } & =\Omega \Lambda-\Lambda \Omega \\
(i[\Omega, \Lambda])^{\dagger} & =(i)^{\dagger}[\Omega, \Lambda]^{\dagger} \\
& =-i(-[\Omega, \Lambda]) \\
& =i[\Omega, \Lambda]
\end{aligned}
$$

which implies that $i[\Omega, \Lambda]$ is Hermitian.
9.4.3 For a one-dimensional hydrogen atom, the Hamiltonian is

$$
H=\frac{P^{2}}{2 m}-\frac{e^{2}}{R}
$$

The expectation value of the energy is

$$
\langle H\rangle=\frac{\left\langle P^{2}\right\rangle}{2 m}-\left\langle\frac{e^{2}}{R}\right\rangle \simeq \frac{\left\langle P^{2}\right\rangle}{2 m}-\frac{e^{2}}{\left\langle\left(R^{2}\right)\right\rangle^{1 / 2}}
$$

Assume that $\langle P\rangle=0$ and $\langle R\rangle=0$ and use $\left\langle\Omega^{2}\right\rangle=(\Delta \Omega)^{2}+\langle\Omega\rangle^{2}$ to get

$$
\langle H\rangle \simeq \frac{(\Delta P)^{2}}{2 m}-\frac{e^{2}}{\Delta R}
$$

Assuming the uncertainty relation $\Delta P \Delta R \geq \hbar / 2$, we then have

$$
\langle H\rangle \geq \frac{\hbar^{2}}{8 m(\Delta R)^{2}}-\frac{e^{2}}{\Delta R}
$$

Minimizing this with respect to $\Delta R$, gives

$$
\frac{d\langle H\rangle}{d(\Delta R)}=\frac{-2 \hbar^{2}}{8 m(\Delta R)^{3}}+\frac{e^{2}}{(\Delta R)^{2}}=0 \quad \Rightarrow \quad(\Delta R)=\frac{\hbar^{2}}{4 m e^{2}}=\frac{a_{0}}{4} .
$$

The resultant energy is

$$
\langle H\rangle \geq \frac{\hbar^{2}}{8 m\left(\hbar^{2} / 4 m e^{2}\right)^{2}}-\frac{e^{2}}{\left(\hbar^{2} / 4 m e^{2}\right)}=-\frac{2 m e^{4}}{\hbar^{2}}=-2 \alpha^{2} m c^{2}
$$

which is 4 times larger than the actual energy.

